Mishra Alok, Swati D
Department of Physics, Faculty of Science, Banaras Hindu University, Varanasi, 221 005, India.
Department of Physics and Bioinformatics, MMV, Banaras Hindu University, Varanasi, 221 005, India.
Australas Phys Eng Sci Med. 2015 Sep;38(3):413-23. doi: 10.1007/s13246-015-0357-2. Epub 2015 Jun 24.
Variation in the interval between the R-R peaks of the electrocardiogram represents the modulation of the cardiac oscillations by the autonomic nervous system. This variation is contaminated by anomalous signals called ectopic beats, artefacts or noise which mask the true behaviour of heart rate variability. In this paper, we have proposed a combination filter of recursive impulse rejection filter and recursive 20% filter, with recursive application and preference of replacement over removal of abnormal beats to improve the pre-processing of the inter-beat intervals. We have tested this novel recursive combinational method with median method replacement to estimate the standard deviation of normal to normal (SDNN) beat intervals of congestive heart failure (CHF) and normal sinus rhythm subjects. This work discusses the improvement in pre-processing over single use of impulse rejection filter and removal of abnormal beats for heart rate variability for the estimation of SDNN and Poncaré plot descriptors (SD1, SD2, and SD1/SD2) in detail. We have found the 22 ms value of SDNN and 36 ms value of SD2 descriptor of Poincaré plot as clinical indicators in discriminating the normal cases from CHF cases. The pre-processing is also useful in calculation of Lyapunov exponent which is a nonlinear index as Lyapunov exponents calculated after proposed pre-processing modified in a way that it start following the notion of less complex behaviour of diseased states.
心电图中R-R峰之间间隔的变化代表自主神经系统对心脏振荡的调节。这种变化会受到称为异位搏动、伪迹或噪声的异常信号的干扰,这些信号会掩盖心率变异性的真实行为。在本文中,我们提出了一种递归脉冲抑制滤波器和递归20%滤波器的组合滤波器,通过递归应用以及优先替换而非去除异常搏动来改进心跳间期的预处理。我们已经用中位数方法替换对这种新颖的递归组合方法进行了测试,以估计充血性心力衰竭(CHF)和正常窦性心律受试者正常到正常(SDNN)心跳间期的标准差。这项工作详细讨论了相较于单独使用脉冲抑制滤波器和去除异常搏动进行心率变异性预处理以估计SDNN和庞加莱图描述符(SD1、SD2和SD1/SD2)而言的改进。我们发现庞加莱图的SDNN为22毫秒值以及SD2描述符为36毫秒值可作为区分正常病例和CHF病例的临床指标。这种预处理在计算李雅普诺夫指数时也很有用,李雅普诺夫指数是一个非线性指标,因为在提议的预处理之后计算的李雅普诺夫指数以一种开始遵循疾病状态不太复杂行为概念的方式进行了修改。