Suppr超能文献

缺氧、AMPK激活与子宫动脉血管反应性

Hypoxia, AMPK activation and uterine artery vasoreactivity.

作者信息

Skeffington K L, Higgins J S, Mahmoud A D, Evans A M, Sferruzzi-Perri A N, Fowden A L, Yung H W, Burton G J, Giussani D A, Moore L G

机构信息

Centre for Trophoblast Research, Department of Physiology Development & Neuroscience, University of Cambridge, Cambridge, UK.

Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.

出版信息

J Physiol. 2016 Mar 1;594(5):1357-69. doi: 10.1113/JP270995. Epub 2015 Jul 31.

Abstract

Genes near adenosine monophosphate-activated protein kinase-α1 (PRKAA1) have been implicated in the greater uterine artery (UtA) blood flow and relative protection from fetal growth restriction seen in altitude-adapted Andean populations. Adenosine monophosphate-activated protein kinase (AMPK) activation vasodilates multiple vessels but whether AMPK is present in UtA or placental tissue and influences UtA vasoreactivity during normal or hypoxic pregnancy remains unknown. We studied isolated UtA and placenta from near-term C57BL/6J mice housed in normoxia (n = 8) or hypoxia (10% oxygen, n = 7-9) from day 14 to day 19, and placentas from non-labouring sea level (n = 3) or 3100 m (n = 3) women. Hypoxia increased AMPK immunostaining in near-term murine UtA and placental tissue. RT-PCR products for AMPK-α1 and -α2 isoforms and liver kinase B1 (LKB1; the upstream kinase activating AMPK) were present in murine and human placenta, and hypoxia increased LKB1 and AMPK-α1 and -α2 expression in the high- compared with low-altitude human placentas. Pharmacological AMPK activation by A769662 caused phenylephrine pre-constricted UtA from normoxic or hypoxic pregnant mice to dilate and this dilatation was partially reversed by the NOS inhibitor l-NAME. Hypoxic pregnancy sufficient to restrict fetal growth markedly augmented the UtA vasodilator effect of AMPK activation in opposition to PE constriction as the result of both NO-dependent and NO-independent mechanisms. We conclude that AMPK is activated during hypoxic pregnancy and that AMPK activation vasodilates the UtA, especially in hypoxic pregnancy. AMPK activation may be playing an adaptive role by limiting cellular energy depletion and helping to maintain utero-placental blood flow in hypoxic pregnancy.

摘要

腺苷酸活化蛋白激酶-α1(PRKAA1)附近的基因与安第斯高海拔适应人群中子宫动脉(UtA)血流量增加以及胎儿生长受限的相对保护作用有关。腺苷酸活化蛋白激酶(AMPK)的激活可使多种血管舒张,但AMPK是否存在于UtA或胎盘组织中,以及在正常或缺氧妊娠期间是否影响UtA血管反应性尚不清楚。我们研究了从第14天到第19天饲养在常氧(n = 8)或缺氧(10%氧气,n = 7 - 9)环境中的近足月C57BL/6J小鼠的离体UtA和胎盘,以及非分娩海平面(n = 3)或海拔3100米(n = 3)女性的胎盘。缺氧增加了近足月小鼠UtA和胎盘组织中的AMPK免疫染色。AMPK-α1和-α2亚型以及肝脏激酶B1(LKB1;激活AMPK的上游激酶)的RT-PCR产物存在于小鼠和人胎盘中,与低海拔人胎盘相比,缺氧增加了高海拔人胎盘中LKB1以及AMPK-α1和-α2的表达。A769662对AMPK的药理学激活导致苯肾上腺素预收缩的常氧或缺氧妊娠小鼠的UtA舒张,这种舒张被一氧化氮合酶抑制剂L-NAME部分逆转。足以限制胎儿生长的缺氧妊娠显著增强了AMPK激活对苯肾上腺素收缩的UtA舒张作用,这是由一氧化氮依赖性和非依赖性机制共同导致的。我们得出结论,AMPK在缺氧妊娠期间被激活,并且AMPK激活可使UtA舒张,尤其是在缺氧妊娠中。AMPK激活可能通过限制细胞能量消耗并有助于维持缺氧妊娠期间的子宫胎盘血流而发挥适应性作用。

相似文献

1
Hypoxia, AMPK activation and uterine artery vasoreactivity.
J Physiol. 2016 Mar 1;594(5):1357-69. doi: 10.1113/JP270995. Epub 2015 Jul 31.
2
Maternal AMPK pathway activation with uterine artery blood flow and fetal growth maintenance during hypoxia.
Am J Physiol Heart Circ Physiol. 2024 Oct 1;327(4):H778-H792. doi: 10.1152/ajpheart.00193.2024. Epub 2024 Jul 19.
5
Uterine artery blood flow, fetal hypoxia and fetal growth.
Philos Trans R Soc Lond B Biol Sci. 2015 Mar 5;370(1663):20140068. doi: 10.1098/rstb.2014.0068.
6
The LKB1-AMPK-α1 signaling pathway triggers hypoxic pulmonary vasoconstriction downstream of mitochondria.
Sci Signal. 2018 Oct 2;11(550):eaau0296. doi: 10.1126/scisignal.aau0296.
9
Morphological and molecular changes in the murine placenta exposed to normobaric hypoxia throughout pregnancy.
J Physiol. 2016 Mar 1;594(5):1371-88. doi: 10.1113/JP271073. Epub 2015 Sep 15.
10
High altitude regulates the expression of AMPK pathways in human placenta.
Placenta. 2021 Jan 15;104:267-276. doi: 10.1016/j.placenta.2021.01.010. Epub 2021 Jan 12.

引用本文的文献

1
High-altitude pregnancy adaptation: evidence from a Himalayan population in Leh.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 21;380(1933):20240396. doi: 10.1098/rstb.2024.0396.
2
Fetal growth and congenital heart disease at high altitude.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 21;380(1933):20240177. doi: 10.1098/rstb.2024.0177.
3
Adaptive variant in Andeans is associated with improved ventilation and sleep phenotypes.
iScience. 2025 Jun 16;28(8):112911. doi: 10.1016/j.isci.2025.112911. eCollection 2025 Aug 15.
4
Cardiovascular outcome in 12-month-old male and female offspring of metformin-treated obese mice.
J Physiol. 2025 Sep;603(17):4747-4764. doi: 10.1113/JP288696. Epub 2025 Jun 19.
5
Placental Adaptation to Hypoxia: The Case of High-Altitude Pregnancies.
Int J Environ Res Public Health. 2025 Feb 4;22(2):214. doi: 10.3390/ijerph22020214.
6
Effects of hypoxia on uteroplacental and fetoplacental vascular function during pregnancy.
Front Physiol. 2024 Dec 18;15:1490154. doi: 10.3389/fphys.2024.1490154. eCollection 2024.
7
Maternal AMPK pathway activation with uterine artery blood flow and fetal growth maintenance during hypoxia.
Am J Physiol Heart Circ Physiol. 2024 Oct 1;327(4):H778-H792. doi: 10.1152/ajpheart.00193.2024. Epub 2024 Jul 19.
8
Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum.
Am J Physiol Heart Circ Physiol. 2024 Jul 1;327(1):H191-H220. doi: 10.1152/ajpheart.00055.2024. Epub 2024 May 17.
9
In vivo noninvasive systemic myography of acute systemic vasoactivity in female pregnant mice.
Nat Commun. 2023 Oct 9;14(1):6286. doi: 10.1038/s41467-023-42041-8.
10
Placental adaptations supporting fetal growth during normal and adverse gestational environments.
Exp Physiol. 2023 Mar;108(3):371-397. doi: 10.1113/EP090442. Epub 2022 Dec 9.

本文引用的文献

1
Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, and PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude.
Physiol Genomics. 2014 Sep 15;46(18):687-97. doi: 10.1152/physiolgenomics.00063.2014. Epub 2014 Jul 15.
3
Beneficial and cautionary outcomes of resveratrol supplementation in pregnant nonhuman primates.
FASEB J. 2014 Jun;28(6):2466-77. doi: 10.1096/fj.13-245472. Epub 2014 Feb 21.
4
Influence of speed of sample processing on placental energetics and signalling pathways: implications for tissue collection.
Placenta. 2014 Feb;35(2):103-8. doi: 10.1016/j.placenta.2013.11.016. Epub 2013 Dec 3.
5
Potassium channels and uterine vascular adaptation to pregnancy and chronic hypoxia.
Curr Vasc Pharmacol. 2013 Sep;11(5):737-47. doi: 10.2174/1570161111311050011.
6
Graduated effects of high-altitude hypoxia and highland ancestry on birth size.
Pediatr Res. 2013 Dec;74(6):633-8. doi: 10.1038/pr.2013.150. Epub 2013 Sep 2.
7
Maternal uterine vascular remodeling during pregnancy.
Microcirculation. 2014 Jan;21(1):38-47. doi: 10.1111/micc.12080.
8
Effects of resveratrol in pregnancy using murine models with reduced blood supply to the uterus.
PLoS One. 2013 May 8;8(5):e64401. doi: 10.1371/journal.pone.0064401. Print 2013.
9
AICAR administration ameliorates hypertension and angiogenic imbalance in a model of preeclampsia in the rat.
Am J Physiol Heart Circ Physiol. 2013 Apr 15;304(8):H1159-65. doi: 10.1152/ajpheart.00903.2012. Epub 2013 Feb 15.
10
The genetic architecture of adaptations to high altitude in Ethiopia.
PLoS Genet. 2012;8(12):e1003110. doi: 10.1371/journal.pgen.1003110. Epub 2012 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验