Slovin Mitchell R, Shirts Michael R
Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States.
Langmuir. 2015 Jul 28;31(29):7980-90. doi: 10.1021/acs.langmuir.5b00842. Epub 2015 Jul 14.
We quantify some of the effects of patterned nanoscale surface texture on static contact angles, dynamic contact angles, and dynamic contact angle hysteresis using molecular dynamics simulations of a moving Lennard-Jones droplet in contact with a solid surface. We observe static contact angles that change with the introduction of surface texture in a manner consistent with theoretical and experimental expectations. However, we find that the introduction of nanoscale surface texture at the length scale of 5-10 times the fluid particle size does not affect dynamic contact angle hysteresis even though it changes both the advancing and receding contact angles significantly. This result differs significantly from microscale experimental results where dynamic contact angle hysteresis decreases with the addition of surface texture due to an increase in the receding contact angle. Instead, we find that molecular-kinetic theory, previously applied only to nonpatterned surfaces, accurately describes dynamic contact angle and dynamic contact angle hysteresis behavior as a function of terminal fluid velocity. Therefore, at length scales of tens of nanometers, the kinetic phenomena such as contact line pinning observed at larger scales become insignificant in comparison to the effects of molecular fluctuations for moving droplets, even though the static properties are essentially scale-invariant. These findings may have implications for the design of highly hierarchical structures with particular wetting properties. We also find that quantitatively determining the trends observed in this article requires the careful selection of system and analysis parameters in order to achieve sufficient accuracy and precision in calculated contact angles. Therefore, we provide a detailed description of our two-surface, circular-fit approach to calculating static and dynamic contact angles on surfaces with nanoscale texturing.
我们通过对与固体表面接触的移动的 Lennard-Jones 液滴进行分子动力学模拟,量化了图案化纳米尺度表面纹理对静态接触角、动态接触角和动态接触角滞后的一些影响。我们观察到,随着表面纹理的引入,静态接触角的变化方式与理论和实验预期一致。然而,我们发现,在流体颗粒尺寸的 5 - 10 倍长度尺度上引入纳米尺度表面纹理,尽管它显著改变了前进接触角和后退接触角,但并不影响动态接触角滞后。这一结果与微观实验结果有显著差异,在微观实验中,由于后退接触角增加,动态接触角滞后会随着表面纹理的添加而减小。相反,我们发现,以前仅应用于无图案表面的分子动力学理论,能够准确描述动态接触角和动态接触角滞后行为与流体终端速度的函数关系。因此,在几十纳米的长度尺度上,与移动液滴的分子涨落效应相比,在较大尺度上观察到的诸如接触线钉扎等动力学现象变得微不足道,尽管静态特性本质上是尺度不变的。这些发现可能对具有特定润湿性的高度分级结构的设计有影响。我们还发现,定量确定本文中观察到的趋势需要仔细选择系统和分析参数,以便在计算接触角时获得足够的准确性和精度。因此,我们详细描述了我们用于计算具有纳米尺度纹理表面上的静态和动态接触角的双表面圆形拟合方法。