Suppr超能文献

表面织构化对超疏油性、接触角滞后和“鲁棒性”的影响。

Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".

机构信息

Xerox Corporation, Xerox Research Center Webster, Webster, New York 14580, United States.

出版信息

Langmuir. 2012 Oct 23;28(42):14925-34. doi: 10.1021/la302765t. Epub 2012 Oct 10.

Abstract

Previously, we reported the creation of a fluorosilane (FOTS) modified pillar array silicon surface comprising ~3-μm-diameter pillars (6 μm pitch with ~7 μm height) that is both superhydrophobic and superoleophobic, with water and hexadecane contact angles exceeding 150° and sliding angles at ~10° owing to the surface fluorination and the re-entrant structure in the side wall of the pillar. In this work, the effects of surface texturing (pillar size, spacing, and height) on wettability, contact angle hysteresis, and "robustness" are investigated. We study the static, advancing, and receding contact angles, as well as the sliding angles as a function of the solid area fraction. The results reveal that pillar size and pillar spacing have very little effect on the static and advancing contact angles, as they are found to be insensitive to the solid area fraction from 0.04 to ~0.4 as the pillar diameter varies from 1 to 5 μm and the center-to-center spacing varies from 4.5 to 12 μm. On the other hand, sliding angle, receding contact angle, and contact angle hysteresis are found to be dependent on the solid area fraction. Specifically, receding contact angle decreases and sliding angle and hysteresis increase as the solid area fraction increases. This effect can be attributable to the increase in pinning as the solid area fraction increases. Surface Evolver modeling shows that water wets and pins the pillar surface whereas hexadecane wets the pillar surface and then penetrates into the side wall of the pillar with the contact line pinning underneath the re-entrant structure. Due to the penetration of the hexadecane drop into the pillar structure, the effect on the receding contact angle and hysteresis is larger relative to that of water. This interpretation is supported by studying a series of FOTS pillar array surfaces with varying overhang thickness. With the water drop, the contact line is pinned on the pillar surface and very little overhang thickness effect was observed. On the other hand, the hexadecane drop is shown to wet the pillar surface and the side wall of the overhang. It then pins at the lower edge of the overhang structure. A plot of the thickness of the overhang as a function of the static, advancing, and receding contact angles and sliding angle of hexadecane reveals that static, advancing, and receding contact angles decrease and sliding angle increases as the thickness of the overhang increases. A larger overhang effect is observed with octane due to its lower surface tension. The robustness of the pillar array surface against external pressure induced wetting and abrasion was modeled. Surface Evolver simulation (with the hexadecane drop) indicates that wetting breakthrough pressure as high as ~70 kPa is achievable with 0.5-μm-diameter pillar array FOTS surfaces. Mechanical modeling shows that bending of the pillars is the key failure by abrasion, which can be avoided with a short pillar structure. The path to fabricate a superoleophobic surface that can withstand the external force equivalent of a gentle cleaning blade (up to ~30 kPa) without wetting and abrasion failure is discussed.

摘要

先前,我们报道了一种氟硅烷(FOTS)修饰的柱状硅阵列表面的制备,该表面由3-μm 直径的柱子(6μm 间距,7μm 高)组成,具有超疏水和超疏油性,水和十六烷的接触角超过 150°,滑动角约为 10°,这归因于表面氟化和柱子侧壁的倒圆结构。在这项工作中,我们研究了表面织构(柱子尺寸、间距和高度)对润湿性、接触角滞后和“鲁棒性”的影响。我们研究了静态、前进和后退接触角以及滑动角作为固体面积分数的函数。结果表明,柱子尺寸和间距对静态和前进接触角几乎没有影响,因为当柱子直径从 1μm 变化到 5μm,中心到中心间距从 4.5μm 变化到 12μm 时,它们对固体面积分数的变化不敏感,固体面积分数从 0.04 到0.4。另一方面,滑动角、后退接触角和接触角滞后依赖于固体面积分数。具体而言,随着固体面积分数的增加,后退接触角减小,滑动角和滞后角增加。这种效应可以归因于固体面积分数增加导致的钉扎现象。表面演化模型表明,水会润湿并钉扎柱子表面,而十六烷会润湿柱子表面,然后渗透到柱子的侧壁中,接触线在倒圆结构下方被钉扎。由于十六烷滴进入柱子结构,后退接触角和滞后角的变化比水的变化更大。这种解释得到了一系列具有不同悬垂厚度的 FOTS 柱状硅阵列表面的研究支持。对于水滴滴,接触线被钉扎在柱子表面上,几乎观察不到悬垂厚度的影响。另一方面,十六烷滴会润湿柱子表面和悬垂的侧壁。然后,它在悬垂结构的下边缘被钉扎。作为十六烷静态、前进和后退接触角和滑动角的函数的悬垂厚度的图表明,随着悬垂厚度的增加,静态、前进和后退接触角减小,滑动角增加。由于其较低的表面张力,辛烷观察到更大的悬垂效应。使用表面演化模拟(带有十六烷滴)表明,具有 0.5-μm 直径的柱状 FOTS 表面可以实现高达70 kPa 的润湿突破压力。力学模型表明,磨损的关键失效是柱子的弯曲,通过短柱结构可以避免这种失效。讨论了制造能够承受相当于温和清洁刀片的外力(高达~30 kPa)而不会润湿和磨损失效的超疏油表面的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验