‡Department of Pharmaceutics, School of Pharmacy, Heilongjiang University of Chinese Medicine, Haerbin, Heilongjiang 150040, China.
ACS Appl Mater Interfaces. 2015 Jul 22;7(28):15430-41. doi: 10.1021/acsami.5b03555. Epub 2015 Jul 9.
Although several strategies have been applied for oral insulin delivery to improve insulin bioavailability, little success has been achieved. To overcome multiple barriers to oral insulin absorption simultaneously, insulin-loaded N-trimethyl chitosan chloride (TMC)-coated polylactide-co-glycoside (PLGA) nanoparticles (Ins TMC-PLGA NPs) were formulated in our study. The Ins TMC-PLGA NPs were prepared using the double-emulsion solvent evaporation method and were characterized to determine their size (247.6 ± 7.2 nm), ζ-potential (45.2 ± 4.6 mV), insulin-loading capacity (7.8 ± 0.5%) and encapsulation efficiency (47.0 ± 2.9%). The stability and insulin release of the nanoparticles in enzyme-containing simulated gastrointestinal fluids suggested that the TMC-PLGA NPs could partially protect insulin from enzymatic degradation. Compared with unmodified PLGA NPs, the positively charged TMC-PLGA NPs could improve the mucus penetration of insulin in mucus-secreting HT29-MTX cells, the cellular uptake of insulin via clathrin- or adsorption-mediated endocytosis in Caco-2 cells and the permeation of insulin across a Caco-2 cell monolayer through tight junction opening. After oral administration in mice, the TMC-PLGA NPs moved more slowly through the gastrointestinal tract compared with unmodified PLGA NPs, indicating the mucoadhesive property of the nanoparticles after TMC coating. Additionally, in pharmacological studies in diabetic rats, orally administered Ins TMC-PLGA NPs produced a stronger hypoglycemic effect, with 2-fold higher relative pharmacological availability compared with unmodified NPs. In conclusion, oral insulin absorption is improved by TMC-PLGA NPs with the multiple absorption barriers overcome simultaneously. TMC-PLGA NPs may be a promising drug delivery system for oral administration of macromolecular therapeutics.
尽管已经应用了几种策略来提高胰岛素的口服生物利用度,但收效甚微。为了同时克服口服胰岛素吸收的多个障碍,本研究中制备了载胰岛素的 N-三甲基壳聚糖盐酸盐(TMC)-包被的聚乳酸-共-糖苷(PLGA)纳米粒(Ins TMC-PLGA NPs)。Ins TMC-PLGA NPs 采用双乳液溶剂蒸发法制备,并对其粒径(247.6±7.2nm)、ζ-电位(45.2±4.6mV)、胰岛素载药量(7.8±0.5%)和包封率(47.0±2.9%)进行了表征。在含有酶的模拟胃肠道液中的稳定性和胰岛素释放表明,TMC-PLGA NPs 可以部分保护胰岛素免受酶的降解。与未经修饰的 PLGA NPs 相比,带正电荷的 TMC-PLGA NPs 可以提高胰岛素在分泌粘液的 HT29-MTX 细胞中的粘液穿透性、胰岛素在 Caco-2 细胞中通过网格蛋白或吸附介导的内吞作用的细胞摄取以及胰岛素通过紧密连接开放穿过 Caco-2 细胞单层的渗透。在小鼠口服给药后,TMC-PLGA NPs 在胃肠道中的移动速度比未经修饰的 PLGA NPs 慢,表明 TMC 涂层后的纳米粒具有粘膜粘附性。此外,在糖尿病大鼠的药效学研究中,口服给予的 Ins TMC-PLGA NPs 产生了更强的降血糖作用,与未经修饰的 NPs 相比,相对药效学利用率提高了 2 倍。综上所述,TMC-PLGA NPs 通过同时克服多个吸收障碍来改善胰岛素的口服吸收。TMC-PLGA NPs 可能是一种有前途的用于大分子治疗药物口服给药的药物递送系统。
ACS Appl Mater Interfaces. 2015-7-9
Nanomedicine (Lond). 2012-5-14
Drug Deliv. 2014-5-28
Int J Nanomedicine. 2015-3-19
Int J Nanomedicine. 2025-5-16
Pharmaceutics. 2025-2-12
J Nanobiotechnology. 2024-12-29
Pharmaceuticals (Basel). 2024-7-15
Int J Mol Sci. 2024-6-28