Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
J Am Soc Mass Spectrom. 2015 Sep;26(9):1633-40. doi: 10.1007/s13361-015-1178-y. Epub 2015 Jun 26.
Miniaturizing instruments for spectroscopic applications requires the designer to confront a tradeoff between instrument resolution and instrument throughput [and associated signal-to-background-ratio (SBR)]. This work demonstrates a solution to this tradeoff in sector mass spectrometry by the first application of one-dimensional (1D) spatially coded apertures, similar to those previously demonstrated in optics. This was accomplished by replacing the input slit of a simple 90° magnetic sector mass spectrometer with a specifically designed coded aperture, deriving the corresponding forward mathematical model and spectral reconstruction algorithm, and then utilizing the resulting system to measure and reconstruct the mass spectra of argon, acetone, and ethanol. We expect the application of coded apertures to sector instrument designs will lead to miniature mass spectrometers that maintain the high performance of larger instruments, enabling field detection of trace chemicals and point-of-use mass spectrometry.
微型化光谱应用仪器需要设计者在仪器分辨率和仪器通量[以及相关的信号背景比(SBR)]之间进行权衡。这项工作通过首次在一维(1D)空间编码孔径中应用类似于先前在光学中展示的孔径,解决了扇区质谱中的这种权衡问题。这是通过用专门设计的编码孔径替换简单的 90°磁扇区质谱仪的输入狭缝来实现的,得出了相应的正向数学模型和光谱重建算法,然后利用所得系统测量和重建氩、丙酮和乙醇的质谱。我们预计编码孔径在扇区仪器设计中的应用将导致保持更大仪器高性能的微型质谱仪,从而能够在现场检测痕量化学物质和现场使用的质谱分析。