Suppr超能文献

通过浑浊生物膜进行光场控制浓度用于光疗。

Controlled light field concentration through turbid biological membrane for phototherapy.

作者信息

Wang Fujuan, He Hexiang, Zhuang Huichang, Xie Xiangsheng, Yang Zhenchong, Cai Zhigang, Gu Huaiyu, Zhou Jianying

机构信息

State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-sen University, Guangzhou, 510275, China.

Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, 510080, China.

出版信息

Biomed Opt Express. 2015 May 26;6(6):2237-45. doi: 10.1364/BOE.6.002237. eCollection 2015 Jun 1.

Abstract

Laser propagation through a turbid rat dura mater membrane is shown to be controllable with a wavefront modulation technique. The scattered light field can be refocused into a target area behind the rat dura mater membrane with a 110 times intensity enhancement using a spatial light modulator. The efficient laser intensity concentration system is demonstrated to imitate the phototherapy for human brain tumors. The power density in the target area is enhanced more than 200 times compared with the input power density on the dura mater membrane, thus allowing continued irradiation concentration to the deep lesion without damage to the dura mater. Multibeam inputs along different directions, or at different positions, can be guided to focus to the same spot behind the membrane, hence providing a similar gamma knife function in optical spectral range. Moreover, both the polarization and the phase of the input field can be recovered in the target area, allowing coherent field superposition in comparison with the linear intensity superposition for the gamma knife.

摘要

研究表明,利用波前调制技术可控制激光在浑浊的大鼠硬脑膜中的传播。使用空间光调制器,散射光场能够被重新聚焦到大鼠硬脑膜后方的目标区域,强度增强110倍。高效激光强度集中系统被证明可模拟人脑肿瘤的光疗。与硬脑膜上的输入功率密度相比,目标区域的功率密度增强了200多倍,从而能够持续将照射集中到深部病变而不损伤硬脑膜。沿不同方向或在不同位置的多光束输入可被引导聚焦到膜后方的同一点,从而在光谱范围内提供类似伽马刀的功能。此外,输入场的偏振和相位在目标区域均可恢复,与伽马刀的线性强度叠加相比,可实现相干场叠加。

相似文献

1
Controlled light field concentration through turbid biological membrane for phototherapy.
Biomed Opt Express. 2015 May 26;6(6):2237-45. doi: 10.1364/BOE.6.002237. eCollection 2015 Jun 1.
4
Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping.
Opt Lett. 2017 May 15;42(10):1895-1898. doi: 10.1364/OL.42.001895.
5
Polarization control of multiply scattered light through random media by wavefront shaping.
Opt Lett. 2012 Nov 15;37(22):4663-5. doi: 10.1364/ol.37.004663.
6
13-fold resolution gain through turbid layer via translated unknown speckle illumination.
Biomed Opt Express. 2017 Dec 19;9(1):260-275. doi: 10.1364/BOE.9.000260. eCollection 2018 Jan 1.
7
Full-polarization wavefront shaping for imaging through scattering media.
Appl Opt. 2020 Jun 10;59(17):5131-5135. doi: 10.1364/AO.391909.
9
Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media.
Opt Express. 2010 Jun 7;18(12):12283-90. doi: 10.1364/OE.18.012283.

本文引用的文献

1
Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window.
J Am Chem Soc. 2014 Nov 5;136(44):15684-93. doi: 10.1021/ja508641z. Epub 2014 Oct 23.
2
Nanoparticles for photothermal therapies.
Nanoscale. 2014 Aug 21;6(16):9494-530. doi: 10.1039/c4nr00708e.
3
Imaging blood cells through scattering biological tissue using speckle scanning microscopy.
Opt Express. 2014 Feb 10;22(3):3405-13. doi: 10.1364/OE.22.003405.
4
Ultrasonically encoded wavefront shaping for focusing into random media.
Sci Rep. 2014 Jan 29;4:3918. doi: 10.1038/srep03918.
5
Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy.
Biomaterials. 2014 Mar;35(9):2915-23. doi: 10.1016/j.biomaterials.2013.12.046. Epub 2014 Jan 10.
7
Image restoration through thin turbid layers by correlation with a known object.
Opt Express. 2013 May 20;21(10):12539-45. doi: 10.1364/OE.21.012539.
8
Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy.
Biomaterials. 2013 Aug;34(26):6239-48. doi: 10.1016/j.biomaterials.2013.04.066. Epub 2013 May 23.
9
Polarization control of multiply scattered light through random media by wavefront shaping.
Opt Lett. 2012 Nov 15;37(22):4663-5. doi: 10.1364/ol.37.004663.
10
Non-invasive imaging through opaque scattering layers.
Nature. 2012 Nov 8;491(7423):232-4. doi: 10.1038/nature11578.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验