i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China.
J Am Chem Soc. 2014 Nov 5;136(44):15684-93. doi: 10.1021/ja508641z. Epub 2014 Oct 23.
Enhanced near-field at noble metal nanoparticle surfaces due to localized surface plasmon resonance (LSPR) has been researched in fields ranging from biomedical to photoelectrical applications. However, it is rarely explored on nonmetallic nanomaterials discovered in recent years, which can also support LSPR by doping-induced free charge carriers, let alone the investigation of an intricate system involving both. Here we construct a dual plasmonic hybrid nanosystem Au-Cu9S5 with well controlled interfaces to study the coupling effect of LSPR originating from the collective electron and hole oscillations. Cu9S5 LSPR is enhanced by 50% in the presence of Au, and the simulation results confirm the coupling effect and the enhanced local field as well as the optical power absorption on Cu9S5 surface. This enhanced optical absorption cross section, high photothermal transduction efficiency (37%), large light penetration depth at 1064 nm, excellent X-ray attenuation ability, and low cytotoxicity enable Au-Cu9S5 hybrids for robust photothermal therapy in the second near-infrared (NIR) window with low nanomaterial dose and laser flux, making them potential theranostic nanomaterials with X-ray CT imaging capability. This study will benefit future design and optimization of photoabsorbers and photothermal nanoheaters utilizing surface plasmon resonance enhancement phenomena for a broad range of applications.
由于局域表面等离激元共振(LSPR),贵金属纳米粒子表面的近场得到了增强,这一现象在从生物医学到光电应用的各个领域都得到了研究。然而,近年来发现的非金属纳米材料在这方面的研究却很少,这些材料也可以通过掺杂诱导的自由载流子来支持 LSPR,更不用说对涉及两者的复杂系统的研究了。在这里,我们构建了一个具有良好控制界面的双等离子体杂化纳米系统 Au-Cu9S5,以研究源于集体电子和空穴振荡的 LSPR 的耦合效应。在 Au 的存在下,Cu9S5 的 LSPR 增强了 50%,模拟结果证实了耦合效应以及增强的局域场和 Cu9S5 表面的光功率吸收。这种增强的光吸收截面、高光热转换效率(37%)、在 1064nm 处的大光穿透深度、优异的 X 射线衰减能力以及低细胞毒性使得 Au-Cu9S5 杂化物能够在低纳米材料剂量和激光通量的情况下在第二近红外(NIR)窗口中进行稳健的光热治疗,使它们成为具有 X 射线 CT 成像能力的潜在治疗诊断纳米材料。本研究将有助于未来利用表面等离激元共振增强现象设计和优化用于广泛应用的光吸收体和光热纳米加热器。