Yang Tong, Zou Hong Yan, Huang Cheng Zhi
†Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
‡College of Pharmaceutical Science, Southwest University, Chongqing 400716, P. R. China.
ACS Appl Mater Interfaces. 2015 Jul 22;7(28):15447-57. doi: 10.1021/acsami.5b03645. Epub 2015 Jul 13.
A new heterogeneous catalytic composite composed of nonstoichiometric Cu2-xSe nanoparticles (NPs) with high copper deficiency and graphene oxide (GO) is prepared by coembedding in electrospun nanofibers of a poly(vinylpyrrolidone) (PVP) support, wherein GO in the nanofibers is converted into reduced GO (rGO) via heat treatment. The as-prepared composite Cu2-xSe/rGO/PVP nanofibers have demonstrated superior catalytic activity toward the reduction of a refractory organic compound by taking 4-nitrophenol (4-NP) as an example. In the presence of NaBH4, the Cu2-xSe/rGO/PVP nanofibers display a synergetic effect between Cu2-xSe and rGO in PVP nanofibers compared to their independent components or corresponding nanofibers. Furthermore, the Cu2-xSe/rGO/PVP nanofibers exhibit a favorable water-stable property via heat treatment to solidify the hydrophilic PVP matrix, which makes the composite display good reusability, stability in aqueous solution, and separability from a water medium. This work not only presents a direct, convenient, and effective approach to doping semiconductor nanomaterials into polymer nanofibers but also provides fundamental routes for further investigations about the synergetic effect between different materials based on the platform of electrospun nanofibers.
通过共嵌入聚(乙烯基吡咯烷酮)(PVP)载体的电纺纳米纤维中,制备了一种由具有高铜缺陷的非化学计量比Cu2-xSe纳米颗粒(NPs)和氧化石墨烯(GO)组成的新型多相催化复合材料,其中纳米纤维中的GO通过热处理转化为还原氧化石墨烯(rGO)。以4-硝基苯酚(4-NP)为例,所制备的复合Cu2-xSe/rGO/PVP纳米纤维对难降解有机化合物的还原表现出优异的催化活性。在NaBH4存在下,与独立组分或相应纳米纤维相比,Cu2-xSe/rGO/PVP纳米纤维在PVP纳米纤维中显示出Cu2-xSe和rGO之间的协同效应。此外,通过热处理使亲水性PVP基体固化,Cu2-xSe/rGO/PVP纳米纤维表现出良好的水稳定性,这使得该复合材料具有良好的可重复使用性、在水溶液中的稳定性以及与水介质的可分离性。这项工作不仅提出了一种将半导体纳米材料掺杂到聚合物纳米纤维中的直接、便捷且有效的方法,还为基于电纺纳米纤维平台进一步研究不同材料之间的协同效应提供了基本途径。