Suppr超能文献

RNF17在小鼠睾丸中阻断PIWI蛋白的杂乱活性。

RNF17 blocks promiscuous activity of PIWI proteins in mouse testes.

作者信息

Wasik Kaja A, Tam Oliver H, Knott Simon R, Falciatori Ilaria, Hammell Molly, Vagin Vasily V, Hannon Gregory J

机构信息

Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA; Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, New York 11724, USA;

Watson School of Biological Sciences, Cold Spring Harbor Laboratory, New York 11724, USA;

出版信息

Genes Dev. 2015 Jul 1;29(13):1403-15. doi: 10.1101/gad.265215.115. Epub 2015 Jun 26.

Abstract

PIWI proteins and their associated piRNAs protect germ cells from the activity of mobile genetic elements. Two classes of piRNAs—primary and secondary—are defined by their mechanisms of biogenesis. Primary piRNAs are processed directly from transcripts of piRNA cluster loci, whereas secondary piRNAs are generated in an adaptive amplification loop, termed the ping-pong cycle. In mammals, piRNA populations are dynamic, shifting as male germ cells develop. Embryonic piRNAs consist of both primary and secondary species and are mainly directed toward transposons. In meiotic cells, the piRNA population is transposon-poor and largely restricted to primary piRNAs derived from pachytene piRNA clusters. The transition from the embryonic to the adult piRNA pathway is not well understood. Here we show that RNF17 shapes adult meiotic piRNA content by suppressing the production of secondary piRNAs. In the absence of RNF17, ping-pong occurs inappropriately in meiotic cells. Ping-pong initiates piRNA responses against not only transposons but also protein-coding genes and long noncoding RNAs, including genes essential for germ cell development. Thus, the sterility of Rnf17 mutants may be a manifestation of a small RNA-based autoimmune reaction.

摘要

PIWI蛋白及其相关的piRNA保护生殖细胞免受可移动遗传元件的活性影响。两类piRNA——初级piRNA和次级piRNA——由其生物发生机制定义。初级piRNA直接从piRNA簇位点的转录本加工而来,而次级piRNA则在一个称为乒乓循环的适应性扩增环中产生。在哺乳动物中,piRNA群体是动态的,随着雄性生殖细胞的发育而变化。胚胎piRNA由初级和次级物种组成,主要针对转座子。在减数分裂细胞中,piRNA群体中转座子较少,并且很大程度上局限于源自粗线期piRNA簇的初级piRNA。从胚胎到成体piRNA途径的转变尚不清楚。在这里,我们表明RNF17通过抑制次级piRNA的产生来塑造成年减数分裂piRNA的含量。在没有RNF17的情况下,乒乓循环在减数分裂细胞中不恰当地发生。乒乓循环不仅启动针对转座子的piRNA反应,还启动针对蛋白质编码基因和长链非编码RNA(包括生殖细胞发育所必需的基因)的piRNA反应。因此,Rnf17突变体的不育可能是基于小RNA的自身免疫反应的一种表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77d8/4511215/31e29eef978f/1403f01.jpg

相似文献

1
RNF17 blocks promiscuous activity of PIWI proteins in mouse testes.
Genes Dev. 2015 Jul 1;29(13):1403-15. doi: 10.1101/gad.265215.115. Epub 2015 Jun 26.
2
piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism.
Cell Res. 2012 Oct;22(10):1429-39. doi: 10.1038/cr.2012.120. Epub 2012 Aug 21.
3
piRNAs from Pig Testis Provide Evidence for a Conserved Role of the Piwi Pathway in Post-Transcriptional Gene Regulation in Mammals.
PLoS One. 2015 May 7;10(5):e0124860. doi: 10.1371/journal.pone.0124860. eCollection 2015.
4
An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes.
Mol Cell. 2013 Apr 11;50(1):67-81. doi: 10.1016/j.molcel.2013.02.016. Epub 2013 Mar 21.
5
Noncoding RNA. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production.
Science. 2015 May 15;348(6236):817-21. doi: 10.1126/science.aaa1264.
6
Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis.
RNA. 2010 Dec;16(12):2503-15. doi: 10.1261/rna.2270710. Epub 2010 Oct 27.
8
piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis.
Genes Dev. 2015 May 15;29(10):1032-44. doi: 10.1101/gad.260455.115.
9
ADAD2 interacts with RNF17 in P-bodies to repress the Ping-pong cycle in pachytene piRNA biogenesis.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.202206067. Epub 2023 Mar 17.
10
piRNA Defense Against Endogenous Retroviruses.
Viruses. 2024 Nov 9;16(11):1756. doi: 10.3390/v16111756.

引用本文的文献

1
PIWI-interacting RNAs: who, what, when, where, why, and how.
EMBO J. 2024 Nov;43(22):5335-5339. doi: 10.1038/s44318-024-00253-8. Epub 2024 Sep 26.
3
MIWI N-terminal arginines orchestrate generation of functional pachytene piRNAs and spermiogenesis.
Nucleic Acids Res. 2024 Jun 24;52(11):6558-6570. doi: 10.1093/nar/gkae193.
4
MIWI arginines orchestrate generation of functional pachytene piRNAs and spermiogenesis.
bioRxiv. 2024 Jan 1:2023.12.31.573779. doi: 10.1101/2023.12.31.573779.
5
Themes and variations on piRNA-guided transposon control.
Mob DNA. 2023 Sep 2;14(1):10. doi: 10.1186/s13100-023-00298-2.
7
P-body-like condensates in the germline.
Semin Cell Dev Biol. 2024 Apr;157:24-32. doi: 10.1016/j.semcdb.2023.06.010. Epub 2023 Jul 3.
8
The absence of core piRNA biogenesis factors does not impact efficient transposon silencing in Drosophila.
PLoS Biol. 2023 Jun 6;21(6):e3002099. doi: 10.1371/journal.pbio.3002099. eCollection 2023 Jun.
9
ADAD2 interacts with RNF17 in P-bodies to repress the Ping-pong cycle in pachytene piRNA biogenesis.
J Cell Biol. 2023 May 1;222(5). doi: 10.1083/jcb.202206067. Epub 2023 Mar 17.
10
ADAD2 functions in spermiogenesis and piRNA biogenesis in mice.
Andrology. 2023 May;11(4):698-709. doi: 10.1111/andr.13400. Epub 2023 Feb 14.

本文引用的文献

1
piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis.
Genes Dev. 2015 May 15;29(10):1032-44. doi: 10.1101/gad.260455.115.
3
The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing.
Genes Dev. 2015 Mar 15;29(6):617-29. doi: 10.1101/gad.254631.114. Epub 2015 Mar 11.
4
MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes.
Cell Res. 2015 Feb;25(2):193-207. doi: 10.1038/cr.2015.4. Epub 2015 Jan 13.
5
Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline.
Genome Res. 2015 Mar;25(3):368-80. doi: 10.1101/gr.180802.114. Epub 2014 Dec 5.
6
HTSeq--a Python framework to work with high-throughput sequencing data.
Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25.
7
Two waves of de novo methylation during mouse germ cell development.
Genes Dev. 2014 Jul 15;28(14):1544-9. doi: 10.1101/gad.244350.114.
10
RNF168 ubiquitylates 53BP1 and controls its response to DNA double-strand breaks.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20982-7. doi: 10.1073/pnas.1320302111. Epub 2013 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验