Bauzá Antonio, Mooibroek Tiddo J, Frontera Antonio
Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares) (Spain).
School of Chemistry of the University of Bristol, Cantock's Close, BS8 1TS, Bristol (United Kingdom).
Chemphyschem. 2015 Aug 24;16(12):2496-517. doi: 10.1002/cphc.201500314. Epub 2015 Jun 26.
Non-covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host-guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non-covalent component (e.g. protein folding, recognition) and rational interference in such 'living' devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ-hole and π-hole interactions. A σ- or π-hole can be seen as positive electrostatic potential on unpopulated σ* or π(() *()) orbitals, which are thus capable of interacting with some electron dense region. A σ-hole is typically located along the vector of a covalent bond such as XH or XHlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ-holes can also be found along a covalent bond with chalcogen (XCh), pnictogen (XPn) and tetrel (XTr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π-hole is typically located perpendicular to the molecular framework of diatomic π-systems such as carbonyls, or conjugated π-systems such as hexafluorobenzene. Anion-π and lone-pair-π interactions are examples of named π-hole interactions between conjugated π-systems and anions or lone-pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well-established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ- and π-hole interactions, present a selection of inquiries that utilise σ- and π-holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid-state structures.
非共价相互作用在(超分子)化学和许多生物学过程中起着至关重要的作用。超分子作用力确实能够决定主客体系统的结构和功能。例如,许多传感器依赖于与分析物的可逆键合。天然机制通常也具有重要的非共价成分(如蛋白质折叠、识别),对这类“活体”装置进行合理干预可能具有药理学意义。为了合理设计/调整超分子系统,了解有哪些超分子合成子可用,并理解使这些合成子相互结合的作用力是很有帮助的。在本综述中,我们聚焦于σ-空穴和π-空穴相互作用。一个σ-空穴或π-空穴可被视为未占据的σ或π(()())轨道上的正静电势,因此能够与一些电子密度高的区域相互作用。一个σ-空穴通常位于共价键(如XH或XHlg,X = 任何原子,Hlg = 卤素)的矢量方向上,它们分别被称为氢键供体和卤键供体。直到最近才清楚,沿着与硫族元素(XCh)、氮族元素(XPn)和碳族元素(XTr)的共价键也能发现σ-空穴。与这些合成子的相互作用被称为硫族元素、氮族元素和碳族元素相互作用。一个π-空穴通常垂直于双原子π-体系(如羰基)或共轭π-体系(如六氟苯)的分子骨架。阴离子-π相互作用和孤对电子-π相互作用分别是共轭π-体系与阴离子或孤对电子之间的π-空穴相互作用的例子。虽然上述命名法表明了作为路易斯酸的超分子合成子的独特化学特性,但值得强调的是,其 underlying physics非常相似。这意味着目前尚未充分确立的相互作用可能会被证明与传统的氢键和卤键同样有用。总之,我们描述了σ-空穴和π-空穴相互作用的物理本质,介绍了一系列利用σ-空穴和π-空穴的研究,并概述了结构数据库(CSD/PDB)的分析,这些分析表明了这些相互作用在固态结构中已经是多么普遍。 (注:原文中“underlying physics”未翻译,可能是特定术语,需结合专业知识确定准确含义后再翻译,这里保留英文供参考)