Suppr超能文献

数学模型揭示了如何调节T细胞反应的三个阶段来对抗免疫逃逸。

Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.

作者信息

Lorenzi Tommaso, Chisholm Rebecca H, Melensi Matteo, Lorz Alexander, Delitala Marcello

机构信息

Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan Cedex, France.

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia.

出版信息

Immunology. 2015 Oct;146(2):271-80. doi: 10.1111/imm.12500. Epub 2015 Aug 2.

Abstract

T cells are key players in immune action against the invasion of target cells expressing non-self antigens. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of target cells, and target cells concurrently shape the host's repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in 'chase-and-escape' dynamics and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the three phases of the immune response orchestrated by antigen-specific T cells: expansion, contraction and memory. Here, we test this hypothesis with a mathematical model that considers the immune response as a selection contest between T cells and target cells. The outcomes of our model suggest that shortening the duration of the contraction phase and stabilizing as many T cells as possible inside the long-lived memory reservoir, using dual immunotherapies based on the cytokines interleukin-7 and/or interleukin-15 in combination with molecular factors that can keep the immunomodulatory action of these interleukins under control, should be an important focus of future immunotherapy research.

摘要

T细胞是针对表达非自身抗原的靶细胞入侵进行免疫反应的关键参与者。在免疫反应过程中,抗原特异性T细胞动态塑造靶细胞的抗原分布,而靶细胞同时塑造宿主的抗原特异性T细胞库。这些相互的选择性清除的相继发生可导致“追逐与逃逸”动态,并导致免疫逃逸。有人提出,可以通过旨在调节由抗原特异性T细胞精心编排的免疫反应的三个阶段(扩增、收缩和记忆)的免疫治疗策略来对抗免疫逃逸。在这里,我们用一个数学模型来检验这一假设,该模型将免疫反应视为T细胞与靶细胞之间的选择竞赛。我们模型的结果表明,使用基于细胞因子白细胞介素-7和/或白细胞介素-15的双重免疫疗法,并结合能够控制这些白细胞介素免疫调节作用的分子因子,缩短收缩期的持续时间,并在长寿记忆库中尽可能稳定更多的T细胞,应该是未来免疫治疗研究的一个重要重点。

相似文献

1
Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.
Immunology. 2015 Oct;146(2):271-80. doi: 10.1111/imm.12500. Epub 2015 Aug 2.
2
A review of mathematical models of cancer-immune interactions in the context of tumor dormancy.
Adv Exp Med Biol. 2013;734:201-34. doi: 10.1007/978-1-4614-1445-2_10.
3
Rational design of vaccines: learning from immune evasion mechanisms of persistent viruses and tumors.
Adv Immunol. 2012;114:217-43. doi: 10.1016/B978-0-12-396548-6.00009-3.
4
Stability of a diverse immunological memory is determined by T cell population dynamics.
Bull Math Biol. 2001 Jul;63(4):685-713. doi: 10.1006/bulm.2001.0242.
5
Simple biophysical model of tumor evasion from immune system control.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 1):031910. doi: 10.1103/PhysRevE.84.031910. Epub 2011 Sep 12.
6
The role of antigen-specific and non-specific immunotherapy in the treatment of cancer.
J Immunotoxicol. 2012 Jul-Sep;9(3):248-58. doi: 10.3109/1547691X.2012.685527. Epub 2012 Jun 26.
10

引用本文的文献

1
Evolutionary dynamics of competing phenotype-structured populations in periodically fluctuating environments.
J Math Biol. 2020 Feb;80(3):775-807. doi: 10.1007/s00285-019-01441-5. Epub 2019 Oct 22.
2
Mathematical modelling of contact dermatitis from nickel and chromium.
J Math Biol. 2019 Jul;79(2):595-630. doi: 10.1007/s00285-019-01371-2. Epub 2019 Jun 13.

本文引用的文献

1
Phenotypic models of T cell activation.
Nat Rev Immunol. 2014 Sep;14(9):619-29. doi: 10.1038/nri3728.
2
Coevolutionary immune system dynamics driving pathogen speciation.
PLoS One. 2014 Jul 23;9(7):e102821. doi: 10.1371/journal.pone.0102821. eCollection 2014.
3
A dynamical model of tumour immunotherapy.
Math Biosci. 2014 Jul;253:50-62. doi: 10.1016/j.mbs.2014.04.003. Epub 2014 Apr 20.
4
Diversity of T-cell responses.
Phys Biol. 2013 Apr;10(2):025002. doi: 10.1088/1478-3975/10/2/025002. Epub 2013 Mar 15.
5
Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development.
Front Immunol. 2013 Jan 23;3:404. doi: 10.3389/fimmu.2012.00404. eCollection 2012.
6
Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis.
Cell Rep. 2012 Nov 29;2(5):1438-47. doi: 10.1016/j.celrep.2012.10.015. Epub 2012 Nov 15.
7
On the role of CD8 T cells in the control of persistent infections.
Biophys J. 2012 Oct 17;103(8):1802-10. doi: 10.1016/j.bpj.2012.07.059. Epub 2012 Oct 16.
8
Transcriptional control of effector and memory CD8+ T cell differentiation.
Nat Rev Immunol. 2012 Nov;12(11):749-61. doi: 10.1038/nri3307. Epub 2012 Oct 19.
9
Into the eye of the cytokine storm.
Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32. doi: 10.1128/MMBR.05015-11.
10
The role of OX40 (CD134) in T-cell memory generation.
Adv Exp Med Biol. 2010;684:57-68. doi: 10.1007/978-1-4419-6451-9_5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验