Suppr超能文献

BEAN 2.0:用于III型分泌效应子鉴定和功能分析的综合网络资源。

BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors.

作者信息

Dong Xiaobao, Lu Xiaotian, Zhang Ziding

机构信息

State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China

出版信息

Database (Oxford). 2015 Jun 27;2015:bav064. doi: 10.1093/database/bav064. Print 2015.

Abstract

Gram-negative pathogenic bacteria inject type III secreted effectors (T3SEs) into host cells to sabotage their immune signaling networks. Because T3SEs constitute a meeting-point of pathogen virulence and host defense, they are of keen interest to host-pathogen interaction research community. To accelerate the identification and functional understanding of T3SEs, we present BEAN 2.0 as an integrated web resource to predict, analyse and store T3SEs. BEAN 2.0 includes three major components. First, it provides an accurate T3SE predictor based on a hybrid approach. Using independent testing data, we show that BEAN 2.0 achieves a sensitivity of 86.05% and a specificity of 100%. Second, it integrates a set of online sequence analysis tools. Users can further perform functional analysis of putative T3SEs in a seamless way, such as subcellular location prediction, functional domain scan and disorder region annotation. Third, it compiles a database covering 1215 experimentally verified T3SEs and constructs two T3SE-related networks that can be used to explore the relationships among T3SEs. Taken together, by presenting a one-stop T3SE bioinformatics resource, we hope BEAN 2.0 can promote comprehensive understanding of the function and evolution of T3SEs.

摘要

革兰氏阴性病原菌将III型分泌效应蛋白(T3SEs)注入宿主细胞,以破坏其免疫信号网络。由于T3SEs构成了病原体毒力和宿主防御的交汇点,它们受到了宿主-病原体相互作用研究领域的密切关注。为了加速T3SEs的鉴定和功能理解,我们推出了BEAN 2.0作为一个综合网络资源,用于预测、分析和存储T3SEs。BEAN 2.0包括三个主要组件。首先,它基于一种混合方法提供了一个准确的T3SE预测器。使用独立测试数据,我们表明BEAN 2.0的灵敏度达到86.05%,特异性达到100%。其次,它集成了一组在线序列分析工具。用户可以以无缝方式进一步对假定的T3SEs进行功能分析,如亚细胞定位预测、功能域扫描和无序区域注释。第三,它编纂了一个涵盖1215个经实验验证的T3SEs的数据库,并构建了两个与T3SE相关的网络,可用于探索T3SEs之间的关系。综上所述,通过提供一个一站式的T3SE生物信息学资源,我们希望BEAN 2.0能够促进对T3SEs功能和进化的全面理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdca/4483310/c19b62876f96/bav064f1p.jpg

相似文献

1
BEAN 2.0: an integrated web resource for the identification and functional analysis of type III secreted effectors.
Database (Oxford). 2015 Jun 27;2015:bav064. doi: 10.1093/database/bav064. Print 2015.
2
T3SEpp: an Integrated Prediction Pipeline for Bacterial Type III Secreted Effectors.
mSystems. 2020 Aug 4;5(4):e00288-20. doi: 10.1128/mSystems.00288-20.
3
Terminal reassortment drives the quantum evolution of type III effectors in bacterial pathogens.
PLoS Pathog. 2006 Oct;2(10):e104. doi: 10.1371/journal.ppat.0020104.
4
T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System.
BMC Bioinformatics. 2010 Oct 15;11 Suppl 7(Suppl 7):S4. doi: 10.1186/1471-2105-11-S7-S4.
5
Identifying Type III Secreted Effector Function via a Yeast Genomic Screen.
G3 (Bethesda). 2019 Feb 7;9(2):535-547. doi: 10.1534/g3.118.200877.
7
DeepT3 2.0: improving type III secreted effector predictions by an integrative deep learning framework.
NAR Genom Bioinform. 2021 Oct 4;3(4):lqab086. doi: 10.1093/nargab/lqab086. eCollection 2021 Dec.
8
EP3: an ensemble predictor that accurately identifies type III secreted effectors.
Brief Bioinform. 2021 Mar 22;22(2):1918-1928. doi: 10.1093/bib/bbaa008.
9
Bastion3: a two-layer ensemble predictor of type III secreted effectors.
Bioinformatics. 2019 Jun 1;35(12):2017-2028. doi: 10.1093/bioinformatics/bty914.
10
Molecular Evolution of Type III Secreted Effector Proteins.
Front Plant Sci. 2019 Apr 5;10:418. doi: 10.3389/fpls.2019.00418. eCollection 2019.

引用本文的文献

2
T4SEpp: A pipeline integrating protein language models to predict bacterial type IV secreted effectors.
Comput Struct Biotechnol J. 2024 Jan 23;23:801-812. doi: 10.1016/j.csbj.2024.01.015. eCollection 2024 Dec.
3
POOE: predicting oomycete effectors based on a pre-trained large protein language model.
mSystems. 2024 Jan 23;9(1):e0100423. doi: 10.1128/msystems.01004-23. Epub 2023 Dec 11.
4
Protein Sorting Prediction.
Methods Mol Biol. 2024;2715:27-63. doi: 10.1007/978-1-0716-3445-5_2.
5
DeepSecE: A Deep-Learning-Based Framework for Multiclass Prediction of Secreted Proteins in Gram-Negative Bacteria.
Research (Wash D C). 2023 Oct 25;6:0258. doi: 10.34133/research.0258. eCollection 2023.
7
From prediction to function: Current practices and challenges towards the functional characterization of type III effectors.
Front Microbiol. 2023 Feb 8;14:1113442. doi: 10.3389/fmicb.2023.1113442. eCollection 2023.
8
Natural language processing approach to model the secretion signal of type III effectors.
Front Plant Sci. 2022 Oct 31;13:1024405. doi: 10.3389/fpls.2022.1024405. eCollection 2022.
9
ProtPlat: an efficient pre-training platform for protein classification based on FastText.
BMC Bioinformatics. 2022 Feb 11;23(1):66. doi: 10.1186/s12859-022-04604-2.

本文引用的文献

2
Pfam: the protein families database.
Nucleic Acids Res. 2014 Jan;42(Database issue):D222-30. doi: 10.1093/nar/gkt1223. Epub 2013 Nov 27.
3
Intrinsic disorder in pathogen effectors: protein flexibility as an evolutionary hallmark in a molecular arms race.
Plant Cell. 2013 Sep;25(9):3153-7. doi: 10.1105/tpc.113.116319. Epub 2013 Sep 13.
4
T3_MM: a Markov model effectively classifies bacterial type III secretion signals.
PLoS One. 2013;8(3):e58173. doi: 10.1371/journal.pone.0058173. Epub 2013 Mar 5.
5
6
SecReT4: a web-based bacterial type IV secretion system resource.
Nucleic Acids Res. 2013 Jan;41(Database issue):D660-5. doi: 10.1093/nar/gks1248. Epub 2012 Nov 28.
7
T3DB: an integrated database for bacterial type III secretion system.
BMC Bioinformatics. 2012 Apr 30;13:66. doi: 10.1186/1471-2105-13-66.
8
Bacterial effector interplay: a new way to view effector function.
Trends Microbiol. 2012 May;20(5):214-9. doi: 10.1016/j.tim.2012.02.007. Epub 2012 Mar 15.
9
Pseudomonas syringae type III effector repertoires: last words in endless arguments.
Trends Microbiol. 2012 Apr;20(4):199-208. doi: 10.1016/j.tim.2012.01.003. Epub 2012 Feb 16.
10
HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment.
Nat Methods. 2011 Dec 25;9(2):173-5. doi: 10.1038/nmeth.1818.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验