Jang Hyun Jae, Park Kyerl, Lee Jaedong, Kim Hyuncheol, Han Kyu Hun, Kwag Jeehyun
Neural Computation Laboratory, Department of Brain and Cognitive Engineering, Korea University, South Korea.
Neural Computation Laboratory, Department of Brain and Cognitive Engineering, Korea University, South Korea; Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, South Korea.
Neuropharmacology. 2015 Dec;99:177-86. doi: 10.1016/j.neuropharm.2015.06.005. Epub 2015 Jun 26.
Diverse variety of hippocampal interneurons exists in the CA1 area, which provides either feedforward (FF) or feedback (FB) inhibition to CA1 pyramidal cell (PC). However, how the two different inhibitory network architectures modulate the computational mode of CA1 PC is unknown. By investigating the CA3 PC rate-driven input-output function of CA1 PC using in vitro electrophysiology, in vitro-simulation of inhibitory network, and in silico computational modeling, we demonstrated for the first time that GABAA receptor-mediated FF and FB inhibition differentially modulate the gain, the spike precision, the neural code transformation and the information capacity of CA1 PC. Recruitment of FF inhibition buffered the CA1 PC spikes to theta-frequency regardless of the input frequency, abolishing the gain and making CA1 PC insensitive to its inputs. Instead, temporal variability of the CA1 PC spikes was increased, promoting the rate-to-temporal code transformation to enhance the information capacity of CA1 PC. In contrast, the recruitment of FB inhibition sub-linearly transformed the input rate to spike output rate with high gain and low spike temporal variability, promoting the rate-to-rate code transformation. These results suggest that GABAA receptor-mediated FF and FB inhibitory circuits could serve as network mechanisms for differentially modulating the gain of CA1 PC, allowing CA1 PC to switch between different computational modes using rate and temporal codes ad hoc. Such switch will allow CA1 PC to efficiently respond to spatio-temporally dynamic inputs and expand its computational capacity during different behavioral and neuromodulatory states in vivo.
海马体CA1区存在多种不同类型的中间神经元,它们对CA1锥体细胞(PC)提供前馈(FF)或反馈(FB)抑制。然而,这两种不同的抑制性网络结构如何调节CA1锥体细胞的计算模式尚不清楚。通过使用体外电生理学、抑制性网络的体外模拟和计算机模拟研究CA1锥体细胞的CA3锥体细胞速率驱动的输入-输出功能,我们首次证明GABAA受体介导的前馈和反馈抑制以不同方式调节CA1锥体细胞的增益、放电精度、神经编码转换和信息容量。前馈抑制的募集使CA1锥体细胞的放电缓冲到θ频率,而与输入频率无关,消除了增益并使CA1锥体细胞对其输入不敏感。相反,CA1锥体细胞放电的时间变异性增加,促进了速率到时间编码的转换,以增强CA1锥体细胞的信息容量。相比之下,反馈抑制的募集以高增益和低放电时间变异性将输入速率亚线性转换为放电输出速率,促进了速率到速率编码的转换。这些结果表明,GABAA受体介导的前馈和反馈抑制性回路可作为网络机制,以不同方式调节CA1锥体细胞的增益,使CA1锥体细胞能够根据需要使用速率和时间编码在不同的计算模式之间切换。这种切换将使CA1锥体细胞能够有效地响应时空动态输入,并在体内不同行为和神经调节状态下扩展其计算能力。