Department of Computing Science and Mathematics, University of Stirling, Stirling, FK9 4LA, United Kingdom.
Hippocampus. 2010 Mar;20(3):423-46. doi: 10.1002/hipo.20661.
It has been proposed that the hippocampal theta rhythm (4-7 Hz) can contribute to memory formation by separating encoding (storage) and retrieval of memories into different functional half-cycles (Hasselmo et al. (2002) Neural Comput 14:793-817). We investigate, via computer simulations, the biophysical mechanisms by which storage and recall of spatio-temporal input patterns are achieved by the CA1 microcircuitry. A model of the CA1 microcircuit is presented that uses biophysical representations of the major cell types, including pyramidal (P) cells and four types of inhibitory interneurons: basket (B) cells, axo-axonic (AA) cells, bistratified (BS) cells and oriens lacunosum-moleculare (OLM) cells. Inputs to the network come from the entorhinal cortex (EC), the CA3 Schaffer collaterals and medial septum. The EC input provides the sensory information, whereas all other inputs provide context and timing information. Septal input provides timing information for phasing storage and recall. Storage is accomplished via a local STDP mediated hetero-association of the EC input pattern and the incoming CA3 input pattern on the CA1 pyramidal cell target synapses. The model simulates the timing of firing of different hippocampal cell types relative to the theta rhythm in anesthetized animals and proposes experimentally confirmed functional roles for the different classes of inhibitory interneurons in the storage and recall cycles (Klausberger et al., (2003, 2004) Nature 421:844-848, Nat Neurosci 7:41-47). Measures of recall performance of new and previously stored input patterns in the presence or absence of various inhibitory interneurons are employed to quantitatively test the performance of our model. Finally, the mean recall quality of the CA1 microcircuit is tested as the number of stored patterns is increased.
有人提出,海马体θ节律(4-7 Hz)可以通过将编码(存储)和记忆检索分离到不同的功能半周期来促进记忆形成(Hasselmo 等人,2002 年,《神经计算》,第 14 卷,第 793-817 页)。我们通过计算机模拟研究了 CA1 微电路通过生物物理机制实现时空输入模式存储和回忆的机制。提出了一个 CA1 微电路模型,该模型使用主要细胞类型的生物物理表示,包括锥体细胞(P 细胞)和四种类型的抑制性中间神经元:basket(B)细胞、axo-axonic(AA)细胞、双分层(BS)细胞和 oriens lacunosum-moleculare(OLM)细胞。网络的输入来自内嗅皮层(EC)、CA3 沙斐尔侧支和中隔。EC 输入提供感觉信息,而所有其他输入提供上下文和时间信息。中隔输入为存储和回忆的相位提供时间信息。存储是通过在 CA1 锥体靶突触上,EC 输入模式和传入的 CA3 输入模式之间的局部 STDP 介导的异联来实现的。该模型模拟了麻醉动物中海马不同细胞类型相对于θ节律的放电时间,并提出了不同抑制性中间神经元在存储和回忆周期中的实验证实的功能作用(Klausberger 等人,2003 年,《自然》,第 421 卷,第 844-848 页;2004 年,《自然神经科学》,第 7 卷,第 41-47 页)。在存在或不存在各种抑制性中间神经元的情况下,采用新的和以前存储的输入模式的回忆性能度量来定量测试我们模型的性能。最后,随着存储模式数量的增加,测试 CA1 微电路的平均回忆质量。