Suppr超能文献

走向量子化数论:谱算子与黎曼假设的非对称判据。

Towards quantized number theory: spectral operators and an asymmetric criterion for the Riemann hypothesis.

机构信息

Department of Mathematics, University of California, 900 University Avenue, Riverside, CA 92521-0135, USA

出版信息

Philos Trans A Math Phys Eng Sci. 2015 Aug 6;373(2047). doi: 10.1098/rsta.2014.0240.

Abstract

This research expository article not only contains a survey of earlier work but also contains a main new result, which we first describe. Given c≥0, the spectral operator [Formula: see text] can be thought of intuitively as the operator which sends the geometry onto the spectrum of a fractal string of dimension not exceeding c. Rigorously, it turns out to coincide with a suitable quantization of the Riemann zeta function ζ=ζ(s): a=ζ(∂), where ∂=∂(c) is the infinitesimal shift of the real line acting on the weighted Hilbert space [Formula: see text]. In this paper, we establish a new asymmetric criterion for the Riemann hypothesis (RH), expressed in terms of the invertibility of the spectral operator for all values of the dimension parameter [Formula: see text] (i.e. for all c in the left half of the critical interval (0,1)). This corresponds (conditionally) to a mathematical (and perhaps also, physical) 'phase transition' occurring in the midfractal case when [Formula: see text]. Both the universality and the non-universality of ζ=ζ(s) in the right (resp., left) critical strip [Formula: see text] (resp., [Formula: see text]) play a key role in this context. These new results are presented here. We also briefly discuss earlier joint work on the complex dimensions of fractal strings, and we survey earlier related work of the author with Maier and with Herichi, respectively, in which were established symmetric criteria for the RH, expressed, respectively, in terms of a family of natural inverse spectral problems for fractal strings of Minkowski dimension D∈(0,1), with [Formula: see text], and of the quasi-invertibility of the family of spectral operators [Formula: see text] (with [Formula: see text]).

摘要

这篇研究论文不仅包含了对早期工作的调查,还包含了一个主要的新结果,我们首先描述这个结果。给定 c≥0,可以直观地将谱算子[Formula: see text]视为将几何形状映射到维度不超过 c 的分形字符串谱上的算子。严格来说,它与黎曼 ζ 函数 ζ=ζ(s)的适当量子化相吻合:a=ζ(∂),其中 ∂=∂(c) 是作用在加权 Hilbert 空间[Formula: see text]上的实线上的无穷小移位。在本文中,我们建立了一个新的不对称黎曼假设 (RH) 准则,该准则用谱算子对于维度参数[Formula: see text]的所有值的可逆性来表示(即对于临界区间 (0,1) 的左半部分中的所有 c)。这对应于(有条件地)当[Formula: see text]时,中分数形情况下发生的数学(也许还有物理)“相变”。ζ=ζ(s)在右(分别为左)临界带[Formula: see text](分别为[Formula: see text])中的普遍性和非普遍性在这种情况下起着关键作用。这些新结果在这里呈现。我们还简要讨论了早期关于分形字符串复维数的联合工作,以及作者与 Maier 和 Herichi 分别在早期的相关工作,在这些工作中,分别建立了 RH 的对称准则,分别用分形字符串的自然逆谱问题家族表示,Minkowski 维数 D∈(0,1),[Formula: see text],以及谱算子家族的拟可逆性[Formula: see text](具有[Formula: see text])。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验