Łochowski Rafał M
1Department of Mathematics and Mathematical Economics, Warsaw School of Economics, ul. Madalińskiego 6/8, Warsaw, 02-513 Poland.
2African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg, 7945 South Africa.
J Inequal Appl. 2018;2018(1):20. doi: 10.1186/s13660-018-1611-4. Epub 2018 Jan 15.
We prove an inequality of the Loéve-Young type for the Riemann-Stieltjes integrals driven by irregular signals attaining their values in Banach spaces, and, as a result, we derive a new theorem on the existence of the Riemann-Stieltjes integrals driven by such signals. Also, for any [Formula: see text], we introduce the space of regulated signals [Formula: see text] ([Formula: see text] are real numbers, and is a Banach space) that may be uniformly approximated with accuracy [Formula: see text] by signals whose total variation is of order [Formula: see text] as [Formula: see text] and prove that they satisfy the assumptions of the theorem. Finally, we derive more exact, rate-independent characterisations of the irregularity of the integrals driven by such signals.
我们证明了由在巴拿赫空间中取值的不规则信号驱动的黎曼 - 斯蒂尔杰斯积分的一个勒维 - 杨型不等式,结果,我们推导出了一个关于此类信号驱动的黎曼 - 斯蒂尔杰斯积分存在性的新定理。此外,对于任意的[公式:见原文],我们引入了可调节信号空间[公式:见原文]([公式:见原文]为实数,且[公式:见原文]是一个巴拿赫空间),当[公式:见原文]时,该空间中的信号总变差为[公式:见原文]阶,且可以以精度[公式:见原文]被均匀逼近,并且证明它们满足该定理的假设。最后,我们推导出了关于此类信号驱动的积分不规则性的更精确、与速率无关的特征描述。