Suppr超能文献

机械自锁手性双环套索烃

Mechanically selflocked chiral gemini-catenanes.

作者信息

Li Sheng-Hua, Zhang Heng-Yi, Xu Xiufang, Liu Yu

机构信息

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

出版信息

Nat Commun. 2015 Jul 1;6:7590. doi: 10.1038/ncomms8590.

Abstract

Mechanically interlocked and entangled molecular architectures represent one of the elaborate topological superstructures engineered at a molecular resolution. Here we report a methodology for fabricating mechanically selflocked molecules (MSMs) through highly efficient one-step amidation of a pseudorotaxane derived from dual functionalized pillar[5]arene (P[5]A) threaded by α,ω-diaminoalkane (DA-n; n=3-12). The monomeric and dimeric pseudo[1]catenanes thus obtained, which are inherently chiral due to the topology of P[5]A used, were isolated and fully characterized by NMR and circular dichroism spectroscopy, X-ray crystallography and DFT calculations. Of particular interest, the dimeric pseudo[1]catenane, named 'gemini-catenane', contained stereoisomeric meso-erythro and dl-threo isomers, in which two P[5]A moieties are threaded by two DA-n chains in topologically different patterns. This access to chiral pseudo[1]catenanes and gemini-catenanes will greatly promote the practical use of such sophisticated chiral architectures in supramolecular and materials science and technology.

摘要

机械互锁和缠结的分子结构代表了在分子分辨率下设计的精细拓扑超结构之一。在此,我们报告了一种通过对由α,ω-二氨基烷烃(DA-n;n = 3 - 12)穿线的双功能化柱[5]芳烃(P[5]A)衍生的准轮烷进行高效一步酰胺化来制备机械自锁分子(MSM)的方法。由此获得的单体和二聚体准[1]索烃,由于所使用的P[5]A的拓扑结构而具有固有手性,通过核磁共振和圆二色光谱、X射线晶体学和密度泛函理论计算进行了分离和全面表征。特别值得注意的是,名为“双子索烃”的二聚体准[1]索烃包含立体异构的内消旋-赤藓糖型和dl-苏阿糖型异构体,其中两个P[5]A部分由两条DA-n链以拓扑不同的模式穿线。这种获得手性准[1]索烃和双子索烃的方法将极大地促进这种复杂手性结构在超分子和材料科学与技术中的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/906a/4506498/fccbc6a691d5/ncomms8590-f1.jpg

相似文献

1
Mechanically selflocked chiral gemini-catenanes.
Nat Commun. 2015 Jul 1;6:7590. doi: 10.1038/ncomms8590.
3
Inducing and Switching the Handedness of Polyacetylenes with Topologically Chiral [2]Catenane Pendants.
Angew Chem Int Ed Engl. 2024 Sep 9;63(37):e202408271. doi: 10.1002/anie.202408271. Epub 2024 Jul 19.
4
Mechanically Interlocked Chiral Self-Templated [2]Catenanes from 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Ligands.
Chemistry. 2021 Aug 19;27(47):12052-12057. doi: 10.1002/chem.202101773. Epub 2021 Jul 5.
5
Stereoselective Construction of Chiral Linear [3]Catenanes and [2]Catenanes.
J Am Chem Soc. 2023 Jan 11;145(1):725-731. doi: 10.1021/jacs.2c12027. Epub 2022 Dec 22.
6
Rotaxane and catenane host structures for sensing charged guest species.
Acc Chem Res. 2014 Jul 15;47(7):1935-49. doi: 10.1021/ar500012a. Epub 2014 Apr 7.
7
Strategies To Assemble Catenanes with Multiple Interlocked Macrocycles.
Inorg Chem. 2018 Apr 2;57(7):3475-3485. doi: 10.1021/acs.inorgchem.7b02523. Epub 2017 Dec 11.
8
Topologically Controlled Syntheses of Unimolecular Oligo[]catenanes.
ACS Cent Sci. 2022 Dec 28;8(12):1672-1682. doi: 10.1021/acscentsci.2c00697. Epub 2022 Nov 29.
9
Calix[4]arene-based bis[2]catenanes: synthesis and chiral resolution.
Chemistry. 2007;13(21):6157-70. doi: 10.1002/chem.200601814.
10
Regioselective template synthesis, X-ray structure, and chiroptical properties of a topologically chiral sulfonamide catenane.
Chirality. 2000 Feb;12(2):76-83. doi: 10.1002/(SICI)1520-636X(2000)12:2<76::AID-CHIR4>3.0.CO;2-K.

引用本文的文献

1
Crystal structure and supra-molecular features of a bis-urea-functionalized pillar[5]arene.
Acta Crystallogr E Crystallogr Commun. 2023 Oct 19;79(Pt 11):1044-1048. doi: 10.1107/S2056989023009003. eCollection 2023 Nov 1.
2
Real-time chirality transfer monitoring from statistically random to discrete homochiral nanotubes.
Nat Commun. 2022 Nov 30;13(1):7378. doi: 10.1038/s41467-022-34827-z.
3
Pillar[]arene-calix[]arene hybrid macrocyclic structures.
RSC Adv. 2022 Oct 3;12(43):28185-28195. doi: 10.1039/d2ra05118d. eCollection 2022 Sep 28.
4
Molecular recognition of methylated amino acids and peptides by Pillar[6]MaxQ.
Org Biomol Chem. 2022 Sep 28;20(37):7429-7438. doi: 10.1039/d2ob01487d.
5
Separation of pyrrolidine from tetrahydrofuran by using pillar[6]arene-based nonporous adaptive crystals.
Chem Sci. 2022 Jun 2;13(25):7536-7540. doi: 10.1039/d2sc02494b. eCollection 2022 Jun 29.
6
Selective complexation and efficient separation of /-1,2-dichloroethene isomers by a pillar[5]arene.
RSC Adv. 2020 Dec 21;10(73):45112-45115. doi: 10.1039/d0ra09307f. eCollection 2020 Dec 17.
8
Spontaneous and induced chiral symmetry breaking of stereolabile pillar[5]arene derivatives upon crystallisation.
Chem Sci. 2021 Jul 27;12(33):10985-10989. doi: 10.1039/d1sc02560k. eCollection 2021 Aug 25.

本文引用的文献

1
A Molecular Chameleon: Chromophoric Sensing by a Self-Complexing Molecular Assembly.
Angew Chem Int Ed Engl. 1998 Apr 20;37(7):975-979. doi: 10.1002/(SICI)1521-3773(19980420)37:7<975::AID-ANIE975>3.0.CO;2-L.
2
Supramolecular Daisy Chains.
Angew Chem Int Ed Engl. 1998 May 18;37(9):1294-1297. doi: 10.1002/(SICI)1521-3773(19980518)37:9<1294::AID-ANIE1294>3.0.CO;2-F.
3
Functionalizing pillar[n]arenes.
Acc Chem Res. 2014 Aug 19;47(8):2631-42. doi: 10.1021/ar500177d. Epub 2014 Jul 7.
4
Proton transfer in host-guest complexation between a difunctional pillar[5]arene and alkyldiamines.
Org Lett. 2014 May 2;16(9):2486-9. doi: 10.1021/ol500857w. Epub 2014 Apr 15.
6
Redox switchable daisy chain rotaxanes driven by radical-radical interactions.
J Am Chem Soc. 2014 Mar 26;136(12):4714-23. doi: 10.1021/ja500675y. Epub 2014 Mar 14.
7
An electrochemically and thermally switchable donor-acceptor [c2]daisy chain rotaxane.
Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1953-8. doi: 10.1002/anie.201308498. Epub 2014 Jan 21.
8
Design and efficient synthesis of a pillar[5]arene-based [1]rotaxane.
Chem Commun (Camb). 2014 Jan 28;50(8):1021-3. doi: 10.1039/c3cc48014c.
9
Functional interlocked systems.
Chem Soc Rev. 2014 Jan 7;43(1):99-122. doi: 10.1039/c3cs60178a. Epub 2013 Sep 26.
10
The click reaction as an efficient tool for the construction of macrocyclic structures.
Molecules. 2013 Aug 8;18(8):9512-30. doi: 10.3390/molecules18089512.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验