Deacon R S, Oiwa A, Sailer J, Baba S, Kanai Y, Shibata K, Hirakawa K, Tarucha S
1] Advanced Device Laboratory, RIKEN, Wako 351-0198, Japan [2] Center for Emergent Matter Science (CEMS), RIKEN, Wako 351-0198, Japan.
The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki 567-0047, Japan.
Nat Commun. 2015 Jul 1;6:7446. doi: 10.1038/ncomms8446.
Devices to generate on-demand non-local spin entangled electron pairs have potential application as solid-state analogues of the entangled photon sources used in quantum optics. Recently, Andreev entanglers that use two quantum dots as filters to adiabatically split and separate the quasi-particles of Cooper pairs have shown efficient splitting through measurements of the transport charge but the spin entanglement has not been directly confirmed. Here we report measurements on parallel quantum dot Josephson junction devices allowing a Josephson current to flow due to the adiabatic splitting and recombination of the Cooper pair between the dots. The evidence for this non-local transport is confirmed through study of the non-dissipative supercurrent while tuning independently the dots with local electrical gates. As the Josephson current arises only from processes that maintain the coherence, we can confirm that a current flows from the spatially separated entangled pair.
按需生成非局域自旋纠缠电子对的器件,有潜力作为量子光学中所使用的纠缠光子源的固态类似物来应用。最近,利用两个量子点作为滤波器来绝热地分裂和分离库珀对的准粒子的安德列夫纠缠器,通过传输电荷测量已显示出有效的分裂,但自旋纠缠尚未得到直接证实。在此,我们报告对平行量子点约瑟夫森结器件的测量,该器件由于库珀对在量子点之间的绝热分裂和复合而允许约瑟夫森电流流动。通过在使用局部电栅独立调节量子点的同时研究非耗散超电流,证实了这种非局域传输的证据。由于约瑟夫森电流仅源于保持相干性的过程,我们可以确认有电流从空间分离的纠缠对中流过。