Suppr超能文献

具有Rashba自旋轨道相互作用的并联双量子点中的超电流和超导二极管效应

Supercurrent and Superconducting Diode Effect in Parallel Double Quantum Dots with Rashba Spin-Orbit Interaction.

作者信息

Chi Feng, Shen Yaohong, Gao Yumei, Liu Jia, Fu Zhenguo, Yi Zichuan, Liu Liming

机构信息

School of Electronic and Information Engineering, UEST of China, Zhongshan Institute, Zhongshan 528400, China.

South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

出版信息

Materials (Basel). 2024 Sep 13;17(18):4497. doi: 10.3390/ma17184497.

Abstract

We study theoretically the supercurrent and the superconducting diode effect (SDE) in a structure comprising parallel-coupled double quantum dots (DQDs) sandwiched between two superconductor leads in the presence of a magnetic flux. The influence of the Rashba spin-orbit interaction (RSOI), which induces a spin-dependent phase factor in the dot-superconductor coupling strength, is taken into account by adopting the nonequilibrium Green's function technique. This RSOI-induced phase factor serves as a driving force for the supercurrent in addition to the usual superconducting phase difference, and it leads to the system's left/right asymmetry. Correspondingly, the magnitude of the positive and negative critical currents become different from each other: the so-called SDE. Our results show that the period, magnitude, and direction of the supercurrents depend strongly on the RSOI-induced phase factor, dots' energy levels, interdot coupling strengths, and the magnetic flux. In the absence of magnetic flux, the diode efficiency is negative and may approach -2, which indicates the perfect diode effect with only negative flowing supercurrent in the absence of a positive one. Interestingly enough, both the sign and magnitude of the diode efficiency can be efficiently adjusted with the help of magnetic flux, the dots' energy levels and the interdot coupling strength and thus provide a controllable SDE by rich means, such as gate voltage or host materials of the system.

摘要

我们从理论上研究了一种结构中的超电流和超导二极管效应(SDE),该结构由夹在两个超导体引线之间的平行耦合双量子点(DQD)组成,并存在磁通量。通过采用非平衡格林函数技术,考虑了Rashba自旋轨道相互作用(RSOI)的影响,该相互作用在点 - 超导体耦合强度中引入了一个与自旋相关的相位因子。除了通常的超导相位差之外,这个由RSOI诱导的相位因子还作为超电流的驱动力,并导致系统的左右不对称。相应地,正临界电流和负临界电流的大小变得彼此不同:即所谓的SDE。我们的结果表明,超电流的周期、大小和方向强烈依赖于RSOI诱导的相位因子、量子点的能级、量子点间耦合强度以及磁通量。在没有磁通量的情况下,二极管效率为负,并且可能接近 -2,这表明在没有正向超电流的情况下,仅存在负向流动的超电流时具有完美的二极管效应。有趣的是,借助磁通量、量子点的能级和量子点间耦合强度,可以有效地调节二极管效率的符号和大小,从而通过诸如栅极电压或系统主体材料等丰富手段提供可控的SDE。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4f7/11433276/736198fb5f4c/materials-17-04497-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验