Keller Sebastian, Boguslawski Katharina, Janowski Tomasz, Reiher Markus, Pulay Peter
Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.
Department of Chemistry and Biochemistry, Fulbright College of Arts and Sciences, University of Arkansas, Fayetteville, Arkansas 72701, USA.
J Chem Phys. 2015 Jun 28;142(24):244104. doi: 10.1063/1.4922352.
The efficient and accurate description of the electronic structure of strongly correlated systems is still a largely unsolved problem. The usual procedures start with a multiconfigurational (usually a Complete Active Space, CAS) wavefunction which accounts for static correlation and add dynamical correlation by perturbation theory, configuration interaction, or coupled cluster expansion. This procedure requires the correct selection of the active space. Intuitive methods are unreliable for complex systems. The inexpensive black-box unrestricted natural orbital (UNO) criterion postulates that the Unrestricted Hartree-Fock (UHF) charge natural orbitals with fractional occupancy (e.g., between 0.02 and 1.98) constitute the active space. UNOs generally approximate the CAS orbitals so well that the orbital optimization in CAS Self-Consistent Field (CASSCF) may be omitted, resulting in the inexpensive UNO-CAS method. A rigorous testing of the UNO criterion requires comparison with approximate full configuration interaction wavefunctions. This became feasible with the advent of Density Matrix Renormalization Group (DMRG) methods which can approximate highly correlated wavefunctions at affordable cost. We have compared active orbital occupancies in UNO-CAS and CASSCF calculations with DMRG in a number of strongly correlated molecules: compounds of electronegative atoms (F2, ozone, and NO2), polyenes, aromatic molecules (naphthalene, azulene, anthracene, and nitrobenzene), radicals (phenoxy and benzyl), diradicals (o-, m-, and p-benzyne), and transition metal compounds (nickel-acetylene and Cr2). The UNO criterion works well in these cases. Other symmetry breaking solutions, with the possible exception of spatial symmetry, do not appear to be essential to generate the correct active space. In the case of multiple UHF solutions, the natural orbitals of the average UHF density should be used. The problems of the UNO criterion and their potential solutions are discussed: finding the UHF solutions, discontinuities on potential energy surfaces, and inclusion of dynamical electron correlation and generalization to excited states.
对强关联体系电子结构进行高效且准确的描述仍是一个很大程度上未解决的问题。通常的方法始于一个多组态(通常是完全活性空间,CAS)波函数,它考虑了静态关联,并通过微扰理论、组态相互作用或耦合簇展开来添加动态关联。此过程需要正确选择活性空间。对于复杂体系,直观方法并不可靠。廉价的黑箱无限制自然轨道(UNO)准则假定具有分数占据(例如,在0.02和1.98之间)的无限制哈特里 - 福克(UHF)电荷自然轨道构成活性空间。UNO通常能很好地近似CAS轨道,以至于在CAS自洽场(CASSCF)中可以省略轨道优化,从而产生了廉价的UNO - CAS方法。对UNO准则进行严格测试需要与近似全组态相互作用波函数进行比较。随着密度矩阵重整化群(DMRG)方法的出现,这变得可行,DMRG方法能够以可承受的成本近似高度关联的波函数。我们在许多强关联分子中比较了UNO - CAS和CASSCF计算中的活性轨道占据情况与DMRG的结果:电负性原子的化合物(F2、臭氧和NO2)、多烯、芳香分子(萘、薁、蒽和硝基苯)、自由基(苯氧基和苄基)、双自由基(邻、间和对 - 苯炔)以及过渡金属化合物(镍 - 乙炔和Cr2)。在这些情况下,UNO准则效果良好。除了空间对称性可能的例外情况,其他破缺对称性的解对于生成正确的活性空间似乎并非必不可少。在存在多个UHF解的情况下,应使用平均UHF密度的自然轨道。讨论了UNO准则的问题及其可能的解决方案:找到UHF解、势能面上的不连续性、包含动态电子关联以及推广到激发态。