Huang Aaron, Qin Guokui, Olsen Bradley D
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
ACS Appl Mater Interfaces. 2015 Jul 15;7(27):14660-9. doi: 10.1021/acsami.5b01884. Epub 2015 Jul 2.
A method for fabricating nanostructured biocatalysts using bioconjugate block copolymer self-assembly is demonstrated, yielding very high protein loadings and activity per unit area, compared to more-established enzyme encapsulation methods. Self-assembled heterogeneous biocatalysts are fabricated by flow coating myoglobin-b-poly(N-isopropylacrylamide) (myoglobin-PNIPAM) block copolymers onto solid supports, and films are stabilized by lightly cross-linking with glutaraldehyde. The conjugates form weakly ordered, nonbirefringent micellar and lamellar assemblies in concentrated solution and disordered but micro-phase-separated structures in thin solid films. The low diffusion resistance in the bioconjugate film imparted by the water-swollen PNIPAM nanostructures, the high enzyme density within the film, and high retention of protein activity results in extremely high catalytic activity: 5-10 times greater than catalysts fabricated using other well-established methods.
展示了一种使用生物共轭嵌段共聚物自组装制造纳米结构生物催化剂的方法,与更成熟的酶包封方法相比,该方法可实现非常高的单位面积蛋白质负载量和活性。通过将肌红蛋白-b-聚(N-异丙基丙烯酰胺)(肌红蛋白-PNIPAM)嵌段共聚物流涂到固体支持物上来制造自组装的非均相生物催化剂,并通过与戊二醛轻度交联来稳定薄膜。这些共轭物在浓溶液中形成弱有序、无双折射的胶束和层状组装体,在固体薄膜中形成无序但微相分离的结构。水膨胀的PNIPAM纳米结构赋予生物共轭薄膜低扩散阻力、薄膜内高酶密度以及蛋白质活性的高保留率,从而产生极高的催化活性:比使用其他成熟方法制造的催化剂高5至10倍。