Suppr超能文献

金黄色葡萄球菌PerR是一种利用铁介导的组氨酸氧化的超敏过氧化氢传感器。

Staphylococcus aureus PerR Is a Hypersensitive Hydrogen Peroxide Sensor using Iron-mediated Histidine Oxidation.

作者信息

Ji Chang-Jun, Kim Jung-Hoon, Won Young-Bin, Lee Yeh-Eun, Choi Tae-Woo, Ju Shin-Yeong, Youn Hwan, Helmann John D, Lee Jin-Won

机构信息

From the Department of Life Science and Research Center for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.

the Department of Biology, California State University Fresno, Fresno, California 93740-8034, and.

出版信息

J Biol Chem. 2015 Aug 14;290(33):20374-86. doi: 10.1074/jbc.M115.664961. Epub 2015 Jul 1.

Abstract

In many Gram-positive bacteria PerR is a major peroxide sensor whose repressor activity is dependent on a bound metal cofactor. The prototype for PerR sensors, the Bacillus subtilis PerRBS protein, represses target genes when bound to either Mn(2+) or Fe(2+) as corepressor, but only the Fe(2+)-bound form responds to H2O2. The orthologous protein in the human pathogen Staphylococcus aureus, PerRSA, plays important roles in H2O2 resistance and virulence. However, PerRSA is reported to only respond to Mn(2+) as corepressor, which suggests that it might rely on a distinct, iron-independent mechanism for H2O2 sensing. Here we demonstrate that PerRSA uses either Fe(2+) or Mn(2+) as corepressor, and that, like PerRBS, the Fe(2+)-bound form of PerRSA senses physiological levels of H2O2 by iron-mediated histidine oxidation. Moreover, we show that PerRSA is poised to sense very low levels of endogenous H2O2, which normally cannot be sensed by B. subtilis PerRBS. This hypersensitivity of PerRSA accounts for the apparent lack of Fe(2+)-dependent repressor activity and consequent Mn(2+)-specific repressor activity under aerobic conditions. We also provide evidence that the activity of PerRSA is directly correlated with virulence, whereas it is inversely correlated with H2O2 resistance, suggesting that PerRSA may be an attractive target for the control of S. aureus pathogenesis.

摘要

在许多革兰氏阳性细菌中,PerR是一种主要的过氧化物传感器,其阻遏活性依赖于结合的金属辅因子。PerR传感器的原型,枯草芽孢杆菌的PerRBS蛋白,当与Mn(2+)或Fe(2+)作为共阻遏物结合时会抑制靶基因,但只有结合Fe(2+)的形式对H2O2有反应。人类病原体金黄色葡萄球菌中的直系同源蛋白PerRSA,在H2O2抗性和毒力方面发挥着重要作用。然而,据报道PerRSA仅对Mn(2+)作为共阻遏物有反应,这表明它可能依赖一种独特的、不依赖铁的机制来感知H2O2。在这里,我们证明PerRSA使用Fe(2+)或Mn(2+)作为共阻遏物,并且与PerRBS一样,结合Fe(2+)的PerRSA形式通过铁介导的组氨酸氧化来感知生理水平的H2O2。此外,我们表明PerRSA能够感知非常低水平的内源性H2O2,而枯草芽孢杆菌的PerRBS通常无法感知这种水平的H2O2。PerRSA的这种超敏感性解释了在有氧条件下明显缺乏Fe(2+)依赖性阻遏活性以及随之而来的Mn(2+)特异性阻遏活性的原因。我们还提供证据表明,PerRSA的活性与毒力直接相关,而与H2O2抗性呈负相关,这表明PerRSA可能是控制金黄色葡萄球菌致病机制的一个有吸引力的靶点。

相似文献

1
Staphylococcus aureus PerR Is a Hypersensitive Hydrogen Peroxide Sensor using Iron-mediated Histidine Oxidation.
J Biol Chem. 2015 Aug 14;290(33):20374-86. doi: 10.1074/jbc.M115.664961. Epub 2015 Jul 1.
2
The difference in in vivo sensitivity between Bacillus licheniformis PerR and Bacillus subtilis PerR is due to the different cellular environments.
Biochem Biophys Res Commun. 2017 Feb 26;484(1):125-131. doi: 10.1016/j.bbrc.2017.01.060. Epub 2017 Jan 16.
3
The roles of two O-donor ligands in the Fe-binding and HO-sensing by the Fe-dependent HO sensor PerR.
Biochem Biophys Res Commun. 2018 Jun 22;501(2):458-464. doi: 10.1016/j.bbrc.2018.05.012. Epub 2018 May 10.
4
The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation.
Nature. 2006 Mar 16;440(7082):363-7. doi: 10.1038/nature04537.
5
Biochemical characterization of the structural Zn2+ site in the Bacillus subtilis peroxide sensor PerR.
J Biol Chem. 2006 Aug 18;281(33):23567-78. doi: 10.1074/jbc.M603968200. Epub 2006 Jun 8.
6
Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues.
PLoS One. 2016 May 13;11(5):e0155539. doi: 10.1371/journal.pone.0155539. eCollection 2016.
8
Redox Sensing by Fe in Bacterial Fur Family Metalloregulators.
Antioxid Redox Signal. 2018 Dec 20;29(18):1858-1871. doi: 10.1089/ars.2017.7359. Epub 2017 Oct 31.
9
The inability of Bacillus licheniformis perR mutant to grow is mainly due to the lack of PerR-mediated fur repression.
J Microbiol. 2017 Jun;55(6):457-463. doi: 10.1007/s12275-017-7051-x. Epub 2017 Apr 22.

引用本文的文献

1
Linking Virulence and Iron Limitation Response in : The sRNA IsrR Is Involved in SaeRS Activation.
J Proteome Res. 2025 Jul 4;24(7):3324-3342. doi: 10.1021/acs.jproteome.5c00059. Epub 2025 Jun 2.
2
SSR42 is a novel regulator of cytolytic activity in .
mBio. 2025 Jun 11;16(6):e0077225. doi: 10.1128/mbio.00772-25. Epub 2025 May 9.
3
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
4
Physiological role and complex regulation of O-reducing enzymes in the obligate anaerobe .
mBio. 2024 Oct 16;15(10):e0159124. doi: 10.1128/mbio.01591-24. Epub 2024 Aug 27.
5
Oxidative stress is intrinsic to staphylococcal adaptation to fatty acid synthesis antibiotics.
iScience. 2024 Mar 16;27(4):109505. doi: 10.1016/j.isci.2024.109505. eCollection 2024 Apr 19.
6
senses human neutrophils via PerR to coordinate the expression of the toxin LukAB.
Infect Immun. 2024 Feb 13;92(2):e0052623. doi: 10.1128/iai.00526-23. Epub 2024 Jan 18.
7
The Arsenal of Species against Oxidants.
Antioxidants (Basel). 2023 Jun 14;12(6):1273. doi: 10.3390/antiox12061273.
8
Iron homeostasis in relies on three differentially expressed efflux systems.
Microbiology (Reading). 2023 Jan;169(1). doi: 10.1099/mic.0.001289.
10
How Microbes Defend Themselves From Incoming Hydrogen Peroxide.
Front Immunol. 2021 Apr 27;12:667343. doi: 10.3389/fimmu.2021.667343. eCollection 2021.

本文引用的文献

1
Neutrophil-Mediated Phagocytosis of Staphylococcus aureus.
Front Immunol. 2014 Sep 26;5:467. doi: 10.3389/fimmu.2014.00467. eCollection 2014.
3
SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8. doi: 10.1093/nar/gku340. Epub 2014 Apr 29.
4
The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators.
Arch Biochem Biophys. 2014 Mar 15;546:41-52. doi: 10.1016/j.abb.2014.01.029. Epub 2014 Feb 7.
5
PerR: a bacterial resistance regulator and can we target it?
Future Med Chem. 2013 Jul;5(11):1177-9. doi: 10.4155/fmc.13.92.
6
Neutrophils versus Staphylococcus aureus: a biological tug of war.
Annu Rev Microbiol. 2013;67:629-50. doi: 10.1146/annurev-micro-092412-155746. Epub 2013 Jul 3.
7
The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium.
Nat Rev Microbiol. 2013 Jul;11(7):443-54. doi: 10.1038/nrmicro3032. Epub 2013 May 28.
8
Peroxide-sensing transcriptional regulators in bacteria.
J Bacteriol. 2012 Oct;194(20):5495-503. doi: 10.1128/JB.00304-12. Epub 2012 Jul 13.
9
Derepression of the Bacillus subtilis PerR peroxide stress response leads to iron deficiency.
J Bacteriol. 2012 Mar;194(5):1226-35. doi: 10.1128/JB.06566-11. Epub 2011 Dec 22.
10
OASIS: online application for the survival analysis of lifespan assays performed in aging research.
PLoS One. 2011;6(8):e23525. doi: 10.1371/journal.pone.0023525. Epub 2011 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验