†Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechique Fédérale de Lausanne (EPFL), Rue de la Maladière 71, Neuchatel 2000, Switzerland.
‡Department of Physics, Sharif University of Technology, Tehran 14588, Iran.
ACS Appl Mater Interfaces. 2015 Jul 15;7(27):14926-32. doi: 10.1021/acsami.5b03719. Epub 2015 Jul 2.
We propose and theoretically evaluate a plasmonic light trapping solution for thin film photovoltaic devices that comprises a monolayer or a submonolayer of wavelength-scale silver particles. We systematically study the effect of silver particle size using full-wave electromagnetic simulations. We find that light trapping is significantly enhanced when wavelength-scale silver particles rather than the ones with subwavelength dimensions are used. We demonstrate that a densely packed monolayer of spherical 700 nm silver particles enhances integrated optical absorption under standard air mass 1.5 global (AM1.5G) in a 7 μm-thick N719-sensitized solar cell by 40% whereas enhancement is smaller than 2% when 100 nm ones are used. Superior performance of wavelength-scale silver particles is attributed to high-order whispering gallery modes that they support. These modes scatter the light over a wider angular range, hence increasing the density of both waveguide and resonance modes within the dye-sensitized layer.
我们提出并理论评估了一种用于薄膜光伏器件的等离子体光捕获解决方案,该解决方案由单层或亚单层的波长尺度银颗粒组成。我们使用全波电磁模拟系统地研究了银颗粒尺寸的影响。我们发现,当使用波长尺度的银颗粒而不是亚波长尺寸的银颗粒时,光捕获会显著增强。我们证明,在 7μm 厚的 N719 敏化太阳能电池中,密集排列的单层 700nm 银颗粒在标准空气质量 1.5 全球(AM1.5G)下增强了 40%的积分光吸收,而使用 100nm 银颗粒时增强小于 2%。波长尺度银颗粒的优越性能归因于它们所支持的高阶 whispering gallery 模式。这些模式将光散射到更宽的角度范围,从而增加了染料敏化层内波导和共振模式的密度。