Feng Caihong, Zhang Le, Yang Menghuan, Song Xiangyun, Zhao Hui, Jia Zhe, Sun Kening, Liu Gao
†School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
‡Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 70R108B, Berkeley, California 94720, United States.
ACS Appl Mater Interfaces. 2015 Jul 29;7(29):15726-34. doi: 10.1021/acsami.5b01285. Epub 2015 Jul 15.
Copper sulfide nanowires/reduced graphene oxide (CuSNWs/rGO) nanocompsites are successfully synthesized via a facile one-pot and template-free solution method in a dimethyl sulfoxide (DMSO)-ethyl glycol (EG) mixed solvent. It is noteworthy that the precursor plays a crucial role in the formation of the nanocomposites structure. SEM, TEM, XRD, IR and Raman spectroscopy are used to investigate the morphological and structural evolution of CuSNWs/rGO nanocomposites. The as-fabricated CuSNWs/rGO nanocompsites show remarkably improved Li-storage performance, excellent cycling stability as well as high-rate capability compared with pristine CuS nanowires. It obtains a reversible capacity of 620 mAh g(-1) at 0.5C (1C = 560 mA g(-1)) after 100 cycles and 320 mAh g(-1) at a high current rate of 4C even after 430 cycles. The excellent lithium storage performance is ascribed to the synergistic effect between CuS nanowires and rGO nanosheets. The as-formed CuSNWs/rGO nanocomposites can effectively accommodate large volume changes, supply a 2D conducting network and trap the polysulfides generated during the conversion reaction of CuS.
硫化铜纳米线/还原氧化石墨烯(CuSNWs/rGO)纳米复合材料通过一种简便的一锅法且无模板的溶液法在二甲基亚砜(DMSO)-乙二醇(EG)混合溶剂中成功合成。值得注意的是,前驱体在纳米复合材料结构的形成中起着关键作用。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、红外光谱(IR)和拉曼光谱来研究CuSNWs/rGO纳米复合材料的形态和结构演变。与原始硫化铜纳米线相比,所制备的CuSNWs/rGO纳米复合材料表现出显著改善的锂存储性能、优异的循环稳定性以及高倍率性能。在0.5C(1C = 560 mA g(-1))下循环100次后,其可逆容量为620 mAh g(-1),即使在4C的高电流倍率下循环430次后,仍有320 mAh g(-1)。优异的锂存储性能归因于硫化铜纳米线和氧化石墨烯纳米片之间的协同效应。所形成的CuSNWs/rGO纳米复合材料能够有效地适应大体积变化,提供二维导电网络并捕获硫化铜转化反应过程中产生的多硫化物。