Suppr超能文献

用于先进钠离子电池负极的基于纳米结构硫化铜-金属有机骨架衍生碳的高效纳米碳涂层

Highly Efficient Nanocarbon Coating Layer on the Nanostructured Copper Sulfide-Metal Organic Framework Derived Carbon for Advanced Sodium-Ion Battery Anode.

作者信息

Kang Chiwon, Lee Yongwoo, Kim Ilhwan, Hyun Seungmin, Lee Tae Hoon, Yun Soyeong, Yoon Won-Sub, Moon Youngkwang, Lee Jinkee, Kim Sunkook, Lee Hoo-Jeong

机构信息

School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.

Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA.

出版信息

Materials (Basel). 2019 Apr 23;12(8):1324. doi: 10.3390/ma12081324.

Abstract

High theoretical capacity and low-cost copper sulfide (CuS)-based anodes have gained great attention for advanced sodium-ion batteries (SIBs). However, their practical application may be hindered due to their unstable cycling performance and problems with the dissolution of sodium sulfides (NaS) into electrolyte. Here, we employed metal organic framework (MOF-199) as a sacrificial template to fabricate nanoporous CuS with a large surface area embedded in the MOF-derived carbon network (CuS-C) through a two-step process of sulfurization and carbonization via HS gas-assisted plasma-enhanced chemical vapor deposition (PECVD) processing. Subsequently, we uniformly coated a nanocarbon layer on the CuS-C through hydrothermal and subsequent annealing processes. The physico-chemical properties of the nanocarbon layer were revealed by the analytical techniques of high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). We acquired a higher SIB performance (capacity retention (~93%) with a specific capacity of 372 mAh/g over 110 cycles) of the nanoporous CuS-C/C core/shell anode materials than that of pure CuS-C. This encouraging SIB performance is attributed to the key roles of a nanocarbon layer coated on the CuS-C to accommodate the volume variation of the CuS-C anode structure during cycling, enhance electrical conductivity and prevent the dissolution of NaS into the electrolyte. With these physico-chemical and electrochemical properties, we ensure that the CuS-C/C structure will be a promising anode material for large-scale and advanced SIBs.

摘要

具有高理论容量和低成本的硫化铜(CuS)基负极材料在先进的钠离子电池(SIBs)领域备受关注。然而,由于其循环性能不稳定以及硫化钠(NaS)溶解到电解质中的问题,它们的实际应用可能会受到阻碍。在此,我们采用金属有机框架(MOF-199)作为牺牲模板,通过硫化氢(HS)气体辅助等离子体增强化学气相沉积(PECVD)处理的硫化和碳化两步过程,制备出嵌入MOF衍生碳网络(CuS-C)中的具有大表面积的纳米多孔CuS。随后,我们通过水热和后续退火工艺在CuS-C上均匀包覆了一层纳米碳层。通过高分辨率透射电子显微镜(HRTEM)、能量色散X射线光谱(EDS)和扫描电子显微镜(SEM)等分析技术揭示了纳米碳层的物理化学性质。我们获得了比纯CuS-C更高的SIB性能(在110次循环中,比容量为372 mAh/g,容量保持率约为93%)的纳米多孔CuS-C/C核壳负极材料。这种令人鼓舞的SIB性能归因于包覆在CuS-C上的纳米碳层在循环过程中起到的关键作用,即适应CuS-C负极结构的体积变化、增强电导率并防止NaS溶解到电解质中。凭借这些物理化学和电化学性质,我们确保CuS-C/C结构将成为大规模和先进SIBs的一种有前景的负极材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71ce/6515688/c85aee6fe2c2/materials-12-01324-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验