Trócoli R, Battistel A, La Mantia F
Semiconductor&Energy Conversion-Center for Electrochemical Sciences, Ruhr-Universität, Universitätsstraße 150, Bochum (Germany) www.ruhr-uni-bochum.de/ces/Fabio.htm.
ChemSusChem. 2015 Aug 10;8(15):2514-9. doi: 10.1002/cssc.201500368. Epub 2015 Jul 2.
Currently, Li is mainly produced through evaporation of Li-rich brines obtained from South American countries such as Bolivia, Chile, and Argentina. The most commonly used process, the lime-soda evaporation, requires a long time and several purification steps, which produces a considerable amount of chemical waste. Various electrochemical methods have been proposed as alternatives, but they use expensive metals such as Ag or Pt, thus rendering these methods economically unacceptable. In this work, we present KNiFe(CN)6 , an abundant and environmentally friendly material, as alternative to these expensive components. The Prussian blue derivate has a higher affinity toward cations (Na(+) or K(+) ) than for Li(+) . Additionally, the use of KNiFe(CN)6 permits the utilization of seawater or brine water as recovery solution, thus reducing the consumption of fresh water, which is typically a scarce element in Li production sites.
目前,锂主要通过蒸发从玻利维亚、智利和阿根廷等南美国家获取的富锂卤水来生产。最常用的工艺——石灰-苏打蒸发法,需要很长时间且经过几个提纯步骤,会产生大量化学废料。已经提出了各种电化学方法作为替代方案,但它们使用诸如银或铂等昂贵金属,因此这些方法在经济上不可行。在这项工作中,我们提出了六氰合铁酸钾镍(KNiFe(CN)6),一种储量丰富且环保的材料,作为这些昂贵成分的替代品。普鲁士蓝衍生物对阳离子(Na(+) 或K(+) )的亲和力高于对Li(+) 的亲和力。此外,使用六氰合铁酸钾镍允许将海水或卤水用作回收溶液,从而减少淡水消耗,而淡水在锂生产地通常是一种稀缺元素。