Suppr超能文献

再探最小方差波束形成器权重

Minimum variance beamformer weights revisited.

作者信息

Moiseev Alexander, Doesburg Sam M, Grunau Ruth E, Ribary Urs

机构信息

Behavioural and Cognitive Neuroscience Institute (BCNI), Vancouver, Canada.

Behavioural and Cognitive Neuroscience Institute (BCNI), Vancouver, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Vancouver, Canada.

出版信息

Neuroimage. 2015 Oct 15;120:201-13. doi: 10.1016/j.neuroimage.2015.06.079. Epub 2015 Jul 2.

Abstract

Adaptive minimum variance beamformers are widely used analysis tools in MEG and EEG. When the target brain activity presents in the form of spatially localized responses, the procedure usually involves two steps. First, positions and orientations of the sources of interest are determined. Second, the filter weights are calculated and source time courses reconstructed. This last step is the object of the current study. Despite different approaches utilized at the source localization stage, basic expressions for the weights have the same form, dictated by the minimum variance condition. These classic expressions involve covariance matrix of the measured field, which includes contributions from both the sources of interest and the noise background. We show analytically that the same weights can alternatively be obtained, if the full field covariance is replaced with that of the noise, provided the beamformer points to the true sources precisely. In practice, however, a certain mismatch is always inevitable. We show that such mismatch results in partial suppression of the true sources if the traditional weights are used. To avoid this effect, the "alternative" weights based on properly estimated noise covariance should be applied at the second, source time course reconstruction step. We demonstrate mathematically and using simulated and real data that in many situations the alternative weights provide significantly better time course reconstruction quality than the traditional ones. In particular, they a) improve source-level SNR and yield more accurately reconstructed waveforms; b) provide more accurate estimates of inter-source correlations; and c) reduce the adverse influence of the source correlations on the performance of single-source beamformers, which are used most often. Importantly, the alternative weights come at no additional computational cost, as the structure of the expressions remains the same.

摘要

自适应最小方差波束形成器是脑磁图(MEG)和脑电图(EEG)中广泛使用的分析工具。当目标脑活动以空间局部响应的形式出现时,该过程通常包括两个步骤。首先,确定感兴趣源的位置和方向。其次,计算滤波器权重并重建源时间历程。最后这一步是当前研究的对象。尽管在源定位阶段采用了不同的方法,但权重的基本表达式具有相同的形式,这是由最小方差条件决定的。这些经典表达式涉及测量场的协方差矩阵,其中包括感兴趣源和噪声背景的贡献。我们通过分析表明,如果波束形成器精确指向真实源,用噪声的协方差矩阵替代全场协方差矩阵,也可以得到相同的权重。然而,在实际中,一定程度的失配总是不可避免的。我们表明,如果使用传统权重,这种失配会导致真实源的部分抑制。为避免这种影响,在第二步源时间历程重建步骤中应应用基于适当估计的噪声协方差的“替代”权重。我们通过数学推导以及使用模拟和真实数据证明,在许多情况下,替代权重比传统权重能提供显著更好的时间历程重建质量。特别是,它们:a)提高源级信噪比并产生更准确重建的波形;b)提供更准确的源间相关性估计;c)减少源相关性对最常使用的单源波束形成器性能的不利影响。重要的是,替代权重不会带来额外的计算成本,因为表达式的结构保持不变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验