Suppr超能文献

使用多源最小方差波束形成器定位事件相关电位:一项验证研究。

Localizing Event-Related Potentials Using Multi-source Minimum Variance Beamformers: A Validation Study.

作者信息

Herdman Anthony T, Moiseev Alexander, Ribary Urs

机构信息

Faculty of Medicine, School of Audiology and Speech Sciences, University of British Columbia, 2177 Wesbrook Mall, Vancouver, V6T 1Z3, Canada.

Behavioral and Cognitive Neuroscience Institute (BCNI), Simon Fraser University, Burnaby, Canada.

出版信息

Brain Topogr. 2018 Jul;31(4):546-565. doi: 10.1007/s10548-018-0627-x. Epub 2018 Feb 15.

Abstract

Adaptive and non-adaptive beamformers have become a prominent neuroimaging tool for localizing neural sources of electroencephalographic (EEG) and magnetoencephalographic (MEG) data. In this study, we investigated single-source and multi-source scalar beamformers with respect to their performances in localizing and reconstructing source activity for simulated and real EEG data. We compared a new multi-source search approach (multi-step iterative approach; MIA) to our previous multi-source search approach (single-step iterative approach; SIA) and a single-source search approach (single-step peak approach; SPA). In order to compare performances across these beamformer approaches, we manipulated various simulated source parameters, such as the amount of signal-to-noise ratio (0.1-0.9), inter-source correlations (0.3-0.9), number of simultaneously active sources (2-8), and source locations. Results showed that localization performance followed the order of MIA > SIA > SPA regardless of the number of sources, source correlations, and single-to-noise ratios. In addition, SIA and MIA were significantly better than SPA at localizing four or more sources. Moreover, MIA was better than SIA and SPA at identifying the true source locations when signal characteristics were at their poorest. Source waveform reconstructions were similar between MIA and SIA but were significantly better than that for SPA. A similar trend was also found when applying these beamformer approaches to a real EEG dataset. Based on our findings, we conclude that multi-source beamformers (MIA and SIA) are an improvement over single-source beamformers for localizing EEG. Importantly, our new search method, MIA, had better localization performance, localization precision, and source waveform reconstruction as compared to SIA or SPA. We therefore recommend its use for improved source localization and waveform reconstruction of event-related potentials.

摘要

自适应和非自适应波束形成器已成为一种重要的神经成像工具,用于定位脑电图(EEG)和脑磁图(MEG)数据的神经源。在本研究中,我们研究了单源和多源标量波束形成器在定位和重建模拟及真实EEG数据的源活动方面的性能。我们将一种新的多源搜索方法(多步迭代方法;MIA)与我们之前的多源搜索方法(单步迭代方法;SIA)以及单源搜索方法(单步峰值方法;SPA)进行了比较。为了比较这些波束形成器方法的性能,我们操纵了各种模拟源参数,如信噪比(0.1 - 0.9)、源间相关性(0.3 - 0.9)、同时活跃源的数量(2 - 8)以及源位置。结果表明,无论源的数量、源相关性和信噪比如何,定位性能都遵循MIA > SIA > SPA的顺序。此外,在定位四个或更多源时,SIA和MIA明显优于SPA。而且,当信号特征最差时,MIA在识别真实源位置方面优于SIA和SPA。MIA和SIA之间的源波形重建相似,但明显优于SPA。将这些波束形成器方法应用于真实EEG数据集时也发现了类似趋势。基于我们的发现,我们得出结论,对于EEG定位,多源波束形成器(MIA和SIA)比单源波束形成器有所改进。重要的是,与SIA或SPA相比,我们的新搜索方法MIA具有更好的定位性能、定位精度和源波形重建。因此,我们建议使用它来改进事件相关电位的源定位和波形重建。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验