Suppr超能文献

组蛋白甲基转移酶抑制剂A-366揭示了G9a/GLP在白血病表观遗传学中的作用。

The Histone Methyltransferase Inhibitor A-366 Uncovers a Role for G9a/GLP in the Epigenetics of Leukemia.

作者信息

Pappano William N, Guo Jun, He Yupeng, Ferguson Debra, Jagadeeswaran Sujatha, Osterling Donald J, Gao Wenqing, Spence Julie K, Pliushchev Marina, Sweis Ramzi F, Buchanan Fritz G, Michaelides Michael R, Shoemaker Alexander R, Tse Chris, Chiang Gary G

机构信息

Discovery Research, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064 United States of America.

出版信息

PLoS One. 2015 Jul 6;10(7):e0131716. doi: 10.1371/journal.pone.0131716. eCollection 2015.

Abstract

Histone methyltransferases are epigenetic regulators that modify key lysine and arginine residues on histones and are believed to play an important role in cancer development and maintenance. These epigenetic modifications are potentially reversible and as a result this class of enzymes has drawn great interest as potential therapeutic targets of small molecule inhibitors. Previous studies have suggested that the histone lysine methyltransferase G9a (EHMT2) is required to perpetuate malignant phenotypes through multiple mechanisms in a variety of cancer types. To further elucidate the enzymatic role of G9a in cancer, we describe herein the biological activities of a novel peptide-competitive histone methyltransferase inhibitor, A-366, that selectively inhibits G9a and the closely related GLP (EHMT1), but not other histone methyltransferases. A-366 has significantly less cytotoxic effects on the growth of tumor cell lines compared to other known G9a/GLP small molecule inhibitors despite equivalent cellular activity on methylation of H3K9me2. Additionally, the selectivity profile of A-366 has aided in the discovery of a potentially important role for G9a/GLP in maintenance of leukemia. Treatment of various leukemia cell lines in vitro resulted in marked differentiation and morphological changes of these tumor cell lines. Furthermore, treatment of a flank xenograft leukemia model with A-366 resulted in growth inhibition in vivo consistent with the profile of H3K9me2 reduction observed. In summary, A-366 is a novel and highly selective inhibitor of G9a/GLP that has enabled the discovery of a role for G9a/GLP enzymatic activity in the growth and differentiation status of leukemia cells.

摘要

组蛋白甲基转移酶是表观遗传调节剂,可修饰组蛋白上的关键赖氨酸和精氨酸残基,被认为在癌症的发生和维持中起重要作用。这些表观遗传修饰具有潜在的可逆性,因此这类酶作为小分子抑制剂的潜在治疗靶点引起了极大的关注。先前的研究表明,组蛋白赖氨酸甲基转移酶G9a(EHMT2)通过多种机制在多种癌症类型中维持恶性表型。为了进一步阐明G9a在癌症中的酶促作用,我们在此描述了一种新型肽竞争性组蛋白甲基转移酶抑制剂A-366的生物学活性,该抑制剂可选择性抑制G9a和密切相关的GLP(EHMT1),但不抑制其他组蛋白甲基转移酶。尽管A-366对H3K9me2甲基化的细胞活性相当,但与其他已知的G9a/GLP小分子抑制剂相比,其对肿瘤细胞系生长的细胞毒性作用明显较小。此外,A-366的选择性特征有助于发现G9a/GLP在白血病维持中的潜在重要作用。体外处理各种白血病细胞系导致这些肿瘤细胞系出现明显的分化和形态变化。此外,用A-366处理侧腹异种移植白血病模型导致体内生长抑制,这与观察到H3K9me2减少的情况一致。总之,A-366是一种新型且高度选择性的G9a/GLP抑制剂,它使人们能够发现G9a/GLP酶活性在白血病细胞生长和分化状态中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ebb/4492996/2a99072f6f30/pone.0131716.g001.jpg

相似文献

1
The Histone Methyltransferase Inhibitor A-366 Uncovers a Role for G9a/GLP in the Epigenetics of Leukemia.
PLoS One. 2015 Jul 6;10(7):e0131716. doi: 10.1371/journal.pone.0131716. eCollection 2015.
2
Inhibition of the G9a/GLP histone methyltransferase complex modulates anxiety-related behavior in mice.
Acta Pharmacol Sin. 2018 May;39(5):866-874. doi: 10.1038/aps.2017.190. Epub 2018 Feb 8.
3
5
A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells.
Nat Chem Biol. 2011 Jul 10;7(8):566-74. doi: 10.1038/nchembio.599.
6
De novo methylation of histone H3K23 by the methyltransferases EHMT1/GLP and EHMT2/G9a.
Epigenetics Chromatin. 2022 Nov 21;15(1):36. doi: 10.1186/s13072-022-00468-1.
7
Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase.
Mol Cell. 2007 Feb 9;25(3):473-81. doi: 10.1016/j.molcel.2007.01.017.
8
Discovery of Potent and Selective Inhibitors for G9a-Like Protein (GLP) Lysine Methyltransferase.
J Med Chem. 2017 Mar 9;60(5):1876-1891. doi: 10.1021/acs.jmedchem.6b01645. Epub 2017 Feb 14.
9
Discovery of novel small molecule inhibitors of lysine methyltransferase G9a and their mechanism in leukemia cell lines.
Eur J Med Chem. 2016 Oct 21;122:382-393. doi: 10.1016/j.ejmech.2016.06.028. Epub 2016 Jun 21.
10
The histone methyltransferase G9a: a new therapeutic target in biliary tract cancer.
Hum Pathol. 2018 Feb;72:117-126. doi: 10.1016/j.humpath.2017.11.003. Epub 2017 Nov 11.

引用本文的文献

1
Pharmacological targeting of CBX7 alters the epigenetic landscape and induces differentiation of leukemic cells.
Blood Neoplasia. 2024 Oct 24;1(4):100052. doi: 10.1016/j.bneo.2024.100052. eCollection 2024 Dec.
2
Immune-modulatory effects of Spindlin-1 inhibitors.
Clin Exp Immunol. 2025 Jan 21;219(1). doi: 10.1093/cei/uxaf013.
3
H3K9 post-translational modifications regulate epiblast/primitive endoderm specification in rabbit blastocysts.
Epigenetics Chromatin. 2025 Jan 13;18(1):2. doi: 10.1186/s13072-025-00568-8.
4
Targeting SETDB1 in cancer and immune regulation: Potential therapeutic strategies in cancer.
Kaohsiung J Med Sci. 2025 Mar;41(3):e12933. doi: 10.1002/kjm2.12933. Epub 2025 Jan 7.
5
G9a an Epigenetic Therapeutic Strategy for Neurodegenerative Conditions: From Target Discovery to Clinical Trials.
Med Res Rev. 2025 May;45(3):985-1015. doi: 10.1002/med.22096. Epub 2025 Jan 6.
6
Phenomics-Based Discovery of Novel Orthosteric Choline Kinase Inhibitors.
Angew Chem Int Ed Engl. 2025 Feb 10;64(7):e202420149. doi: 10.1002/anie.202420149. Epub 2025 Jan 13.
7
GLP and G9a histone methyltransferases as potential therapeutic targets for lymphoid neoplasms.
Cancer Cell Int. 2024 Jul 12;24(1):243. doi: 10.1186/s12935-024-03441-y.
8
G9a in Cancer: Mechanisms, Therapeutic Advancements, and Clinical Implications.
Cancers (Basel). 2024 Jun 8;16(12):2175. doi: 10.3390/cancers16122175.
9
SETDB1 as a cancer target: challenges and perspectives in drug design.
RSC Med Chem. 2024 Mar 19;15(5):1424-1451. doi: 10.1039/d3md00366c. eCollection 2024 May 22.
10
Inhibition of EHMT1/2 rescues synaptic damage and motor impairment in a PD mouse model.
Cell Mol Life Sci. 2024 Mar 12;81(1):128. doi: 10.1007/s00018-024-05176-5.

本文引用的文献

1
Discovery and development of potent and selective inhibitors of histone methyltransferase g9a.
ACS Med Chem Lett. 2014 Jan 2;5(2):205-9. doi: 10.1021/ml400496h. eCollection 2014 Feb 13.
2
The methyltransferase G9a regulates HoxA9-dependent transcription in AML.
Genes Dev. 2014 Feb 15;28(4):317-27. doi: 10.1101/gad.236794.113.
3
Chromatin proteins and modifications as drug targets.
Nature. 2013 Oct 24;502(7472):480-8. doi: 10.1038/nature12751.
4
Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP.
J Med Chem. 2013 Nov 14;56(21):8931-42. doi: 10.1021/jm401480r. Epub 2013 Oct 31.
5
Epigenetic regulation of autophagy by the methyltransferase G9a.
Mol Cell Biol. 2013 Oct;33(20):3983-93. doi: 10.1128/MCB.00813-13. Epub 2013 Aug 5.
6
EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations.
Nature. 2012 Dec 6;492(7427):108-12. doi: 10.1038/nature11606. Epub 2012 Oct 10.
7
Epigenetic protein families: a new frontier for drug discovery.
Nat Rev Drug Discov. 2012 Apr 13;11(5):384-400. doi: 10.1038/nrd3674.
8
A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells.
Nat Chem Biol. 2011 Jul 10;7(8):566-74. doi: 10.1038/nchembio.599.
9
Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor.
Cancer Cell. 2011 Jul 12;20(1):53-65. doi: 10.1016/j.ccr.2011.06.009.
10
Histone lysine methylation and demethylation pathways in cancer.
Biochim Biophys Acta. 2011 Jan;1815(1):75-89. doi: 10.1016/j.bbcan.2010.10.002. Epub 2010 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验