Suppr超能文献

PAX3向有丝分裂染色体的加载由精氨酸甲基化介导,并与瓦登伯格综合征相关。

Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

作者信息

Wu Tsu-Fang, Yao Ya-Li, Lai I-Lu, Lai Chien-Chen, Lin Pei-Lun, Yang Wen-Ming

机构信息

From the Department of Life Sciences, Department of Biotechnology, Hung Kuang University, Taichung 43302, Taiwan.

Department of Biotechnology, Asia University, Taichung 41354, Taiwan, and

出版信息

J Biol Chem. 2015 Aug 14;290(33):20556-64. doi: 10.1074/jbc.M114.607713. Epub 2015 Jul 6.

Abstract

PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome.

摘要

PAX3是一种对哺乳动物发育中的基因调控至关重要的转录因子。PAX3的突变与瓦登伯革氏综合征(WS)相关,但突变的PAX3蛋白导致WS的机制仍不清楚。在此,我们发现PAX3利用其同源结构域加载到有丝分裂染色体上。同源结构域发生突变的PAX3 WS突变体失去了结合有丝分裂染色体的能力。此外,PAX3加载到有丝分裂染色体上需要精氨酸甲基化,这由甲基转移酶PRMT5和去甲基酶JMJD6调节。失去有丝分裂染色体定位的突变PAX3蛋白会阻碍细胞增殖和斑马鱼的正常发育。这些结果揭示了PAX3加载到有丝分裂染色体上的分子机制以及这种定位模式在正常发育中的重要性。我们的研究结果表明,PAX3 WS突变体以显性负性方式干扰PAX3的正常功能,这对于理解瓦登伯革氏综合征的发病机制很重要。

相似文献

1
Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.
J Biol Chem. 2015 Aug 14;290(33):20556-64. doi: 10.1074/jbc.M114.607713. Epub 2015 Jul 6.
4
Two different PAX3 gene mutations causing Waardenburg syndrome type I.
Mol Cell Probes. 1996 Jun;10(3):229-31. doi: 10.1006/mcpr.1996.0032.
5
Mutations in PAX3 associated with Waardenburg syndrome type I.
Hum Mutat. 1994;3(3):205-11. doi: 10.1002/humu.1380030306.
6
Mutations in PAX3 that cause Waardenburg syndrome type I: ten new mutations and review of the literature.
Am J Med Genet. 1995 Aug 28;58(2):115-22. doi: 10.1002/ajmg.1320580205.
8
Subnuclear localization and mobility are key indicators of PAX3 dysfunction in Waardenburg syndrome.
Hum Mol Genet. 2008 Jun 15;17(12):1825-37. doi: 10.1093/hmg/ddn076. Epub 2008 Mar 5.
9
Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2.
Nat Genet. 1993 Jan;3(1):26-30. doi: 10.1038/ng0193-26.

引用本文的文献

1
Rhabdomyosarcoma fusion oncoprotein initially pioneers a neural signature in vivo.
Cell Rep. 2025 Jul 22;44(7):115923. doi: 10.1016/j.celrep.2025.115923. Epub 2025 Jul 3.
2
Lysine and arginine methylation of transcription factors.
Cell Mol Life Sci. 2024 Dec 16;82(1):5. doi: 10.1007/s00018-024-05531-6.
3
Pioneer factors: roles and their regulation in development.
Trends Genet. 2024 Feb;40(2):134-148. doi: 10.1016/j.tig.2023.10.007. Epub 2023 Nov 7.
4
JMJD family proteins in cancer and inflammation.
Signal Transduct Target Ther. 2022 Sep 1;7(1):304. doi: 10.1038/s41392-022-01145-1.
5
A specific JMJD6 inhibitor potently suppresses multiple types of cancers both in vitro and in vivo.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2200753119. doi: 10.1073/pnas.2200753119. Epub 2022 Aug 15.
6
The arginine methyltransferase Carm1 is necessary for heart development.
G3 (Bethesda). 2022 Jul 29;12(8). doi: 10.1093/g3journal/jkac155.
7
Pioneer factors in development and cancer.
iScience. 2021 Sep 15;24(10):103132. doi: 10.1016/j.isci.2021.103132. eCollection 2021 Oct 22.
8
Evidence of pioneer factor activity of an oncogenic fusion transcription factor.
iScience. 2021 Jul 16;24(8):102867. doi: 10.1016/j.isci.2021.102867. eCollection 2021 Aug 20.
9
How Protein Methylation Regulates Steroid Receptor Function.
Endocr Rev. 2022 Jan 12;43(1):160-197. doi: 10.1210/endrev/bnab014.
10
Model to Link Cell Shape and Polarity with Organogenesis.
iScience. 2020 Feb 21;23(2):100830. doi: 10.1016/j.isci.2020.100830. Epub 2020 Jan 11.

本文引用的文献

2
The transcriptional repression activity of STAF65γ is facilitated by promoter tethering and nuclear import of class IIa histone deacetylases.
Biochim Biophys Acta. 2014 Jul;1839(7):579-91. doi: 10.1016/j.bbagrm.2014.05.007. Epub 2014 May 19.
3
Pax genes: regulators of lineage specification and progenitor cell maintenance.
Development. 2014 Feb;141(4):737-51. doi: 10.1242/dev.091785.
4
Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes.
Genes Dev. 2013 Feb 1;27(3):251-60. doi: 10.1101/gad.206458.112. Epub 2013 Jan 25.
5
Depletion of Aurora-A in zebrafish causes growth retardation due to mitotic delay and p53-dependent cell death.
FEBS J. 2013 Mar;280(6):1518-30. doi: 10.1111/febs.12153. Epub 2013 Feb 24.
6
A transcription factor-based mechanism for mouse heterochromatin formation.
Nat Struct Mol Biol. 2012 Oct;19(10):1023-30. doi: 10.1038/nsmb.2382. Epub 2012 Sep 16.
7
Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1.
Cell. 2012 Aug 17;150(4):725-37. doi: 10.1016/j.cell.2012.06.038.
8
Histone arginine methylation.
FEBS Lett. 2011 Jul 7;585(13):2024-31. doi: 10.1016/j.febslet.2010.11.010. Epub 2010 Nov 11.
9
Mitotic bookmarking of genes: a novel dimension to epigenetic control.
Nat Rev Genet. 2010 Aug;11(8):583-9. doi: 10.1038/nrg2827. Epub 2010 Jul 13.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验