Suppr超能文献

通过延时显微镜对人类基因组进行表型分析揭示了细胞分裂基因。

Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes.

机构信息

MitoCheck Project Group, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.

出版信息

Nature. 2010 Apr 1;464(7289):721-7. doi: 10.1038/nature08869.

Abstract

Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a genome-wide phenotypic profiling of each of the approximately 21,000 human protein-coding genes by two-day live imaging of fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes the entire high-content data set available as a resource to the community.

摘要

尽管我们对人类基因组的了解迅速增长,但我们仍不知道一些最基本生命功能所需的所有基因。为了开始填补这一空白,我们开发了一种高通量表型筛选平台,该平台结合了 RNA 干扰的强大基因沉默、延时显微镜和计算图像处理。我们通过对荧光标记染色体进行为期两天的实时成像,对大约 21000 个人类蛋白编码基因进行了全基因组表型分析。通过计算图像处理对表型进行定量评分,使我们能够鉴定出数百个人类基因,这些基因涉及多种生物学功能,包括细胞分裂、迁移和存活。作为 Mitocheck 联盟的一部分,这项研究对细胞分裂表型进行了深入分析,并将整个高内涵数据集作为资源提供给社区。

相似文献

2
Cell biology forum: Genome-wide view of mitosis.
Nature. 2010 Apr 1;464(7289):684-5. doi: 10.1038/464684a.
3
High-throughput RNAi screening by time-lapse imaging of live human cells.
Nat Methods. 2006 May;3(5):385-90. doi: 10.1038/nmeth876.
4
TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis.
PLoS One. 2017 Jul 26;12(7):e0179752. doi: 10.1371/journal.pone.0179752. eCollection 2017.
6
Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay.
BMC Bioinformatics. 2013 Oct 16;14:308. doi: 10.1186/1471-2105-14-308.
7
Genome-scale RNAi profiling of cell division in human tissue culture cells.
Nat Cell Biol. 2007 Dec;9(12):1401-12. doi: 10.1038/ncb1659. Epub 2007 Nov 11.
8
Clustering phenotype populations by genome-wide RNAi and multiparametric imaging.
Mol Syst Biol. 2010 Jun 8;6:370. doi: 10.1038/msb.2010.25.
9
Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.
BMC Bioinformatics. 2013 Oct 4;14:292. doi: 10.1186/1471-2105-14-292.

引用本文的文献

1
Progress and new challenges in image-based profiling.
ArXiv. 2025 Aug 7:arXiv:2508.05800v1.
2
Morphological map of under- and overexpression of genes in human cells.
Nat Methods. 2025 Aug;22(8):1742-1752. doi: 10.1038/s41592-025-02753-9. Epub 2025 Aug 7.
3
NuMA mechanically reinforces the spindle independently of its partner dynein.
Curr Biol. 2025 Jul 30. doi: 10.1016/j.cub.2025.07.028.
4
NuMA mechanically reinforces the spindle independently of its partner dynein.
bioRxiv. 2024 Dec 1:2024.11.29.622360. doi: 10.1101/2024.11.29.622360.
5
A versatile information retrieval framework for evaluating profile strength and similarity.
Nat Commun. 2025 Jun 4;16(1):5181. doi: 10.1038/s41467-025-60306-2.
6
Identification of targetable vulnerabilities of PLK1-overexpressing cancers by synthetic dosage lethality.
Cell Genom. 2025 Jun 11;5(6):100876. doi: 10.1016/j.xgen.2025.100876. Epub 2025 May 9.
7
SART1 uniquely localizes to spindle poles forming a SART1 cap and promotes spindle pole assembly.
J Biol Chem. 2025 May 2;301(6):108561. doi: 10.1016/j.jbc.2025.108561.
8
TOR1 AIP1 interacts with p53 to enhance cell cycle dysregulation in prostate cancer progression.
Mol Cell Biochem. 2025 Jul;480(7):4483-4497. doi: 10.1007/s11010-025-05276-1. Epub 2025 Apr 8.
9
Global functional genomics reveals GRK5 as a cystic fibrosis therapeutic target synergistic with current modulators.
iScience. 2025 Feb 1;28(3):111942. doi: 10.1016/j.isci.2025.111942. eCollection 2025 Mar 21.
10
ARHGEF17/TEM4 regulates the cell cycle through control of G1 progression.
J Cell Biol. 2025 Mar 3;224(3). doi: 10.1083/jcb.202311194. Epub 2025 Feb 4.

本文引用的文献

1
Automatic identification and clustering of chromosome phenotypes in a genome wide RNAi screen by time-lapse imaging.
J Struct Biol. 2010 Apr;170(1):1-9. doi: 10.1016/j.jsb.2009.10.004. Epub 2009 Oct 23.
2
Aurora B-mediated abscission checkpoint protects against tetraploidization.
Cell. 2009 Feb 6;136(3):473-84. doi: 10.1016/j.cell.2008.12.020.
3
BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals.
Nat Methods. 2008 May;5(5):409-15. doi: 10.1038/nmeth.1199. Epub 2008 Apr 6.
4
Genome-scale RNAi profiling of cell division in human tissue culture cells.
Nat Cell Biol. 2007 Dec;9(12):1401-12. doi: 10.1038/ncb1659. Epub 2007 Nov 11.
5
Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy.
Bioinformatics. 2008 Jan 1;24(1):94-101. doi: 10.1093/bioinformatics/btm530. Epub 2007 Nov 7.
6
Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase.
Nat Cell Biol. 2007 Jul;9(7):822-31. doi: 10.1038/ncb1606. Epub 2007 Jun 10.
7
Reverse transfection on cell arrays for high content screening microscopy.
Nat Protoc. 2007;2(2):392-9. doi: 10.1038/nprot.2006.483.
8
Automated subcellular location determination and high-throughput microscopy.
Dev Cell. 2007 Jan;12(1):7-16. doi: 10.1016/j.devcel.2006.12.007.
9
High-throughput RNAi screening by time-lapse imaging of live human cells.
Nat Methods. 2006 May;3(5):385-90. doi: 10.1038/nmeth876.
10
Identification of pathways regulating cell size and cell-cycle progression by RNAi.
Nature. 2006 Feb 23;439(7079):1009-13. doi: 10.1038/nature04469.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验