用于线性子空间的保角相似二进制签名。

Angular-Similarity-Preserving Binary Signatures for Linear Subspaces.

出版信息

IEEE Trans Image Process. 2015 Nov;24(11):4372-80. doi: 10.1109/TIP.2015.2451173. Epub 2015 Jul 1.

Abstract

We propose a similarity-preserving binary signature method for linear subspaces. In computer vision and pattern recognition, linear subspace is a very important representation for many kinds of data, such as face images, action and gesture videos, and so on. When there is a large amount of subspace data and the ambient dimension is high, the cost of computing the pairwise similarity between the subspaces would be high and it requires a large storage space for storing the subspaces. In this paper, we first define the angular similarity and angular distance between the subspaces. Then, based on this similarity definition, we develop a similarity-preserving binary signature method for linear subspaces, which transforms a linear subspace into a compact binary signature, and the Hamming distance between two signatures provides an unbiased estimate of the angular similarity between the two subspaces. We also provide a lower bound of the signature length sufficient to guarantee uniform distance-preservation between every pair of subspaces in a set. Experiments on face recognition, gesture recognition, and action recognition verify the effectiveness of the proposed method.

摘要

我们提出了一种用于线性子空间的保相似性二进制签名方法。在线性子空间中,计算机视觉和模式识别是一种非常重要的表示形式,它可以表示各种数据,例如人脸图像、动作和手势视频等。当存在大量子空间数据且环境维度较高时,计算子空间之间的成对相似性的成本会很高,并且需要大量存储空间来存储子空间。在本文中,我们首先定义了子空间之间的角度相似性和角度距离。然后,基于这个相似性定义,我们开发了一种用于线性子空间的保相似性二进制签名方法,该方法将线性子空间转换为紧凑的二进制签名,并且两个签名之间的汉明距离为两个子空间之间的角度相似性提供了无偏估计。我们还提供了签名长度的下限,以确保集合中每对子空间之间的均匀距离保持。在人脸识别、手势识别和动作识别方面的实验验证了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索