Raju Karthik, Doulias Paschalis-Thomas, Evans Perry, Krizman Elizabeth N, Jackson Joshua G, Horyn Oksana, Daikhin Yevgeny, Nissim Ilana, Yudkoff Marc, Nissim Itzhak, Sharp Kim A, Robinson Michael B, Ischiropoulos Harry
Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.
Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA.
Sci Signal. 2015 Jul 7;8(384):ra68. doi: 10.1126/scisignal.aaa4312.
Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS(-/-)) or neuronal nitric oxide synthase (nNOS(-/-)). In particular, nNOS(-/-) animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. (15)N-glutamine-based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS(-/-) mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys(373) and Cys(561) in wild-type and eNOS(-/-) mice, but not in nNOS(-/-) mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism.
一氧化氮(NO)是中枢神经系统(CNS)中谷氨酸能神经传递过程中的一种信号中间体。NO信号传导部分是通过半胱氨酸S-亚硝基化来完成的,这是一种翻译后修饰,通过它NO调节蛋白质功能和信号传导。在我们对生理条件下CNS中S-亚硝基化的蛋白质靶点和功能影响的研究中,我们在野生型小鼠大脑的136种蛋白质中鉴定出269个S-亚硝基半胱氨酸残基。在内皮型一氧化氮合酶缺失(eNOS(-/-))或神经元型一氧化氮合酶缺失(nNOS(-/-))的小鼠大脑中,这些位点的数量显著减少。特别是,nNOS(-/-)动物中参与谷氨酸/谷氨酰胺循环(一种突触谷氨酸被回收或氧化以提供能量的代谢过程)的蛋白质的S-亚硝基化减少。基于(15)N-谷氨酰胺的代谢组学分析和酶活性测定表明,与其他基因型小鼠的脑提取物相比,nNOS(-/-)小鼠的脑提取物将较少的谷氨酸转化为谷氨酰胺,并且氧化更多的谷氨酸。GLT1 [也称为EAAT2(兴奋性氨基酸转运体2)],一种星形胶质细胞中的谷氨酸转运体,在野生型和eNOS(-/-)小鼠中,其半胱氨酸(Cys)373和Cys561位点发生S-亚硝基化,但在nNOS(-/-)小鼠中未发生。与暴露于S-亚硝基化剂的细胞中的野生型GLT1相比,一种在等效位点不能进行S-亚硝基化的大鼠GLT1形式具有增加的谷氨酸摄取。因此,NO通过对控制谷氨酸转运和代谢的蛋白质进行选择性的、nNOS依赖性的S-亚硝基化来调节谷氨酸能神经传递。