Suppr超能文献

基于容积卡尔曼滤波的煤矿区高噪声差分干涉图相位解缠方法评估

Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas.

作者信息

Liu Wanli, Bian Zhengfu, Liu Zhenguo, Zhang Qiuzhao

机构信息

School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China.

State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China.

出版信息

Sensors (Basel). 2015 Jul 6;15(7):16336-57. doi: 10.3390/s150716336.

Abstract

Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise.

摘要

差分干涉合成孔径雷达已被证明在监测煤矿区地面沉降方面是有效的。相位解缠对监测结果会产生显著影响。本文介绍了一种基于滤波的相位解缠算法与路径跟踪相结合的方法,用于解缠煤矿区高噪声的差分干涉图。它可以同时进行噪声滤波和相位解缠,从而可以省略预滤波步骤,通常能保留更多细节并提高可检测到的变形。对于该方法,使用简化的容积卡尔曼滤波处理相位解缠的非线性测量模型,这是一种在许多非线性领域中使用的有效且高效的工具。设计了三个案例研究来评估该方法的性能。在案例1中,设计了两个测试来评估该方法在不同因素(包括多视数和路径引导指标)下的性能。结果表明,解缠结果对多视数敏感,并且费舍尔距离是我们研究中最合适的路径引导指标。然后设计了两个案例研究来评估基于容积卡尔曼滤波的相位解缠方法的可行性。结果表明,与流行的最小成本流方法相比,基于容积卡尔曼滤波的相位解缠在无需预滤波的情况下可以取得有前景的结果,是适用于高噪声煤矿区的一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18bf/4541881/7d1145c4848d/sensors-15-16336-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验