Suppr超能文献

相互交叉的转录网络限制基因调控进化。

Intersecting transcription networks constrain gene regulatory evolution.

作者信息

Sorrells Trevor R, Booth Lauren N, Tuch Brian B, Johnson Alexander D

机构信息

1] Department of Biochemistry &Biophysics, Department of Microbiology &Immunology, University of California, San Francisco, California 94158, USA [2] Tetrad Graduate Program, University of California, San Francisco, California 94158, USA.

1] Department of Biochemistry &Biophysics, Department of Microbiology &Immunology, University of California, San Francisco, California 94158, USA [2] Biological and Medical Informatics Graduate Program, University of California, San Francisco, California 94158, USA.

出版信息

Nature. 2015 Jul 16;523(7560):361-5. doi: 10.1038/nature14613. Epub 2015 Jul 8.

Abstract

Epistasis-the non-additive interactions between different genetic loci-constrains evolutionary pathways, blocking some and permitting others. For biological networks such as transcription circuits, the nature of these constraints and their consequences are largely unknown. Here we describe the evolutionary pathways of a transcription network that controls the response to mating pheromone in yeast. A component of this network, the transcription regulator Ste12, has evolved two different modes of binding to a set of its target genes. In one group of species, Ste12 binds to specific DNA binding sites, while in another lineage it occupies DNA indirectly, relying on a second transcription regulator to recognize DNA. We show, through the construction of various possible evolutionary intermediates, that evolution of the direct mode of DNA binding was not directly accessible to the ancestor. Instead, it was contingent on a lineage-specific change to an overlapping transcription network with a different function, the specification of cell type. These results show that analysing and predicting the evolution of cis-regulatory regions requires an understanding of their positions in overlapping networks, as this placement constrains the available evolutionary pathways.

摘要

上位性——不同基因座之间的非加性相互作用——限制了进化途径,阻断了一些途径而允许其他途径。对于诸如转录回路等生物网络而言,这些限制的本质及其后果在很大程度上尚不清楚。在此,我们描述了一个控制酵母中交配信息素反应的转录网络的进化途径。该网络的一个组成部分,转录调节因子Ste12,已经进化出两种与其一组靶基因结合的不同模式。在一组物种中,Ste12与特定的DNA结合位点结合,而在另一谱系中,它间接占据DNA,依靠另一种转录调节因子来识别DNA。我们通过构建各种可能的进化中间体表明,直接DNA结合模式的进化对祖先来说并非直接可达。相反,它取决于对具有不同功能(细胞类型特化)的重叠转录网络的谱系特异性改变。这些结果表明,分析和预测顺式调控区域的进化需要了解它们在重叠网络中的位置,因为这种位置限制了可用的进化途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d5d/4531262/5cf4597cd37b/nihms697808f6.jpg

相似文献

1
Intersecting transcription networks constrain gene regulatory evolution.
Nature. 2015 Jul 16;523(7560):361-5. doi: 10.1038/nature14613. Epub 2015 Jul 8.
2
Genetic analysis of variation in transcription factor binding in yeast.
Nature. 2010 Apr 22;464(7292):1187-91. doi: 10.1038/nature08934. Epub 2010 Mar 17.
4
Genome-wide location and function of DNA binding proteins.
Science. 2000 Dec 22;290(5500):2306-9. doi: 10.1126/science.290.5500.2306.
6
7
Divergence of transcription factor binding sites across related yeast species.
Science. 2007 Aug 10;317(5839):815-9. doi: 10.1126/science.1140748.
8
Pheromone-induced degradation of Ste12 contributes to signal attenuation and the specificity of developmental fate.
Eukaryot Cell. 2006 Dec;5(12):2147-60. doi: 10.1128/EC.00270-06. Epub 2006 Oct 13.
9
Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.
10
Evolution of alternative transcriptional circuits with identical logic.
Nature. 2006 Sep 28;443(7110):415-20. doi: 10.1038/nature05099.

引用本文的文献

1
Synthetic Forms Most Beautiful: Engineering Insights into Self-Organization.
Physiology (Bethesda). 2025 Jul 1;40(4):0. doi: 10.1152/physiol.00064.2024. Epub 2025 Feb 12.
2
Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells.
Genome Biol. 2024 Aug 12;25(1):217. doi: 10.1186/s13059-024-03351-2.
5
Dissecting an ancient stress resistance trait syndrome in the compost yeast .
bioRxiv. 2023 Dec 22:2023.12.21.572915. doi: 10.1101/2023.12.21.572915.
7
Extending the reach of homology by using successive computational filters to find yeast pheromone genes.
Curr Biol. 2023 Oct 9;33(19):4098-4110.e3. doi: 10.1016/j.cub.2023.08.039. Epub 2023 Sep 11.
8
Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells.
bioRxiv. 2023 Nov 30:2023.08.14.553318. doi: 10.1101/2023.08.14.553318.
9
Cooperative assembly confers regulatory specificity and long-term genetic circuit stability.
Cell. 2023 Aug 31;186(18):3810-3825.e18. doi: 10.1016/j.cell.2023.07.012. Epub 2023 Aug 7.

本文引用的文献

1
Low affinity binding site clusters confer hox specificity and regulatory robustness.
Cell. 2015 Jan 15;160(1-2):191-203. doi: 10.1016/j.cell.2014.11.041. Epub 2014 Dec 31.
2
Historical contingency and its biophysical basis in glucocorticoid receptor evolution.
Nature. 2014 Aug 14;512(7513):203-7. doi: 10.1038/nature13410. Epub 2014 Jun 15.
3
Low-affinity transcription factor binding sites shape morphogen responses and enhancer evolution.
Philos Trans R Soc Lond B Biol Sci. 2013 Nov 11;368(1632):20130018. doi: 10.1098/rstb.2013.0018. Print 2013 Dec 19.
5
Constraint and contingency in multifunctional gene regulatory circuits.
PLoS Comput Biol. 2013;9(6):e1003071. doi: 10.1371/journal.pcbi.1003071. Epub 2013 Jun 6.
6
Spatial promoter recognition signatures may enhance transcription factor specificity in yeast.
PLoS One. 2013;8(1):e53778. doi: 10.1371/journal.pone.0053778. Epub 2013 Jan 8.
8
Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012 Mar 4;9(4):357-9. doi: 10.1038/nmeth.1923.
9
Evolutionary erosion of yeast sex chromosomes by mating-type switching accidents.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20024-9. doi: 10.1073/pnas.1112808108. Epub 2011 Nov 28.
10
Rapid evolutionary rewiring of a structurally constrained eye enhancer.
Curr Biol. 2011 Jul 26;21(14):1186-96. doi: 10.1016/j.cub.2011.05.056. Epub 2011 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验