Biological Design Center, Boston University, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA.
Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
Cell. 2023 Aug 31;186(18):3810-3825.e18. doi: 10.1016/j.cell.2023.07.012. Epub 2023 Aug 7.
A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.
真核转录调控的一个普遍特征是转录因子(TFs)和 DNA 顺式调控基序之间的协同自组装。人们认为,这种策略能够在基因网络中形成特定的调控连接,否则这些连接将存在于相互作用较弱、特异性较低的分子成分之间。在这里,我们使用在酵母中构建的合成基因回路,发现基于人工锌指的 TF 之间的协同、多价相互作用可以产生高的调控特异性。我们表明,使用协同 TF 组装策略“布线”的回路有效地避免了宿主细胞基因组的异常失调。正如我们在实验和数学模型中所证明的,这种机制足以挽救电路驱动的适应性缺陷,从而使回路在长期连续培养中具有遗传和功能稳定性。我们受自然启发的方法为构建高保真、进化稳健的基因回路提供了一种简单、可推广的手段,这些回路可以扩展到广泛的宿主生物和应用。