Suppr超能文献

初级视觉皮层中对视差敏感神经元的多个空间频率通道整合

Integration of Multiple Spatial Frequency Channels in Disparity-Sensitive Neurons in the Primary Visual Cortex.

作者信息

Baba Mika, Sasaki Kota S, Ohzawa Izumi

机构信息

Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan, and.

Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan, and Center for Information and Neural Networks (CiNet), Osaka 565-0871, Japan.

出版信息

J Neurosci. 2015 Jul 8;35(27):10025-38. doi: 10.1523/JNEUROSCI.0790-15.2015.

Abstract

UNLABELLED

For our vivid perception of a 3-D world, the stereoscopic function begins in our brain by detecting slight shifts of image features between the two eyes, called binocular disparity. The primary visual cortex is the first stage of this processing, and neurons there are tuned to a limited range of spatial frequencies (SFs). However, our visual world is generally highly complex, composed of numerous features at a variety of scales, thereby having broadband SF spectra. This means that binocular information signaled by individual neurons is highly incomplete, and combining information across multiple SF bands must be essential for the visual system to function in a robust and reliable manner. In this study, we investigated whether the integration of information from multiple SF channels begins in the cat primary visual cortex. We measured disparity-selective responses in the joint left-right SF domain using sequences of dichoptically flashed grating stimuli consisting of various combinations of SFs and phases. The obtained interaction map in the joint SF domain reflects the degree of integration across different SF channels. Our data are consistent with the idea that disparity information is combined from multiple SF channels in a substantial fraction of complex cells. Furthermore, for the majority of these neurons, the optimal disparity is matched across the SF bands. These results suggest that a highly specific SF integration process for disparity detection starts in the primary visual cortex.

SIGNIFICANCE STATEMENT

Our visual world is broadband, containing features with a wide range of object scales. On the other hand, single neurons in the primary visual cortex are narrow-band, being tuned narrowly for a specific scale. For robust visual perception, narrow-band information of single neurons must be integrated eventually at some stage. We have examined whether such an integration process begins in the primary visual cortex with respect to binocular processing. The results suggest that a subset of cells appear to combine binocular information across multiple scales. Furthermore, for the majority of these neurons, an optimal parameter of binocular tuning is matched across multiple scales, suggesting the presence of a highly specific neural integration mechanism.

摘要

未标注

为了对三维世界有生动的感知,立体视觉功能在我们大脑中通过检测两眼之间图像特征的微小偏移(即双眼视差)而启动。初级视觉皮层是这一处理过程的第一阶段,那里的神经元被调整到有限范围的空间频率(SFs)。然而,我们的视觉世界通常高度复杂,由各种尺度的众多特征组成,因此具有宽带SF光谱。这意味着单个神经元发出的双眼信息非常不完整,跨多个SF频段组合信息对于视觉系统以稳健和可靠的方式运作至关重要。在本研究中,我们调查了来自多个SF通道的信息整合是否始于猫的初级视觉皮层。我们使用由SFs和相位的各种组合组成的双眼闪烁光栅刺激序列,测量了联合左右SF域中的视差选择性反应。在联合SF域中获得的相互作用图反映了不同SF通道之间的整合程度。我们的数据与这样一种观点一致,即视差信息在相当一部分复杂细胞中是从多个SF通道组合而来的。此外,对于这些神经元中的大多数,最佳视差在各个SF频段上是匹配的。这些结果表明,用于视差检测的高度特异性的SF整合过程始于初级视觉皮层。

意义声明

我们的视觉世界是宽带的,包含具有广泛物体尺度的特征。另一方面,初级视觉皮层中的单个神经元是窄带的,针对特定尺度进行狭窄调整。为了实现稳健的视觉感知,单个神经元的窄带信息最终必须在某个阶段进行整合。我们研究了这种整合过程是否就双眼处理而言始于初级视觉皮层。结果表明,一部分细胞似乎在多个尺度上组合双眼信息。此外,对于这些神经元中的大多数,双眼调谐的最佳参数在多个尺度上是匹配的,这表明存在一种高度特异性的神经整合机制。

相似文献

1
Integration of Multiple Spatial Frequency Channels in Disparity-Sensitive Neurons in the Primary Visual Cortex.
J Neurosci. 2015 Jul 8;35(27):10025-38. doi: 10.1523/JNEUROSCI.0790-15.2015.
2
Disparity Sensitivity and Binocular Integration in Mouse Visual Cortex Areas.
J Neurosci. 2020 Nov 11;40(46):8883-8899. doi: 10.1523/JNEUROSCI.1060-20.2020. Epub 2020 Oct 13.
3
Encoding of binocular disparity by complex cells in the cat's visual cortex.
J Neurophysiol. 1997 Jun;77(6):2879-909. doi: 10.1152/jn.1997.77.6.2879.
4
Spatial frequency integration for binocular correspondence in macaque area V4.
J Neurophysiol. 2008 Jan;99(1):402-8. doi: 10.1152/jn.00096.2007. Epub 2007 Oct 24.
6
Binocular spatial phase tuning characteristics of neurons in the macaque striate cortex.
J Neurophysiol. 1997 Jul;78(1):351-65. doi: 10.1152/jn.1997.78.1.351.
7
Disparity-tuning characteristics of neuronal responses to dynamic random-dot stereograms in macaque visual area V4.
J Neurophysiol. 2005 Oct;94(4):2683-99. doi: 10.1152/jn.00319.2005. Epub 2005 Jul 6.
8
Encoding of binocular disparity by simple cells in the cat's visual cortex.
J Neurophysiol. 1996 May;75(5):1779-805. doi: 10.1152/jn.1996.75.5.1779.
9
Effects of generalized pooling on binocular disparity selectivity of neurons in the early visual cortex.
Philos Trans R Soc Lond B Biol Sci. 2016 Jun 19;371(1697). doi: 10.1098/rstb.2015.0266.
10
Functional connectivity of disparity-tuned neurons in the visual cortex.
J Neurophysiol. 2004 Apr;91(4):1794-807. doi: 10.1152/jn.00574.2003. Epub 2003 Dec 10.

引用本文的文献

1
Visual short-term memory for crossed and uncrossed binocular disparities.
PLoS One. 2024 Oct 22;19(10):e0312202. doi: 10.1371/journal.pone.0312202. eCollection 2024.
2
The influence of stereopsis on visual saliency in a proto-object based model of selective attention.
Vision Res. 2023 Nov;212:108304. doi: 10.1016/j.visres.2023.108304. Epub 2023 Aug 3.
4
"What Not" Detectors Help the Brain See in Depth.
Curr Biol. 2017 May 22;27(10):1403-1412.e8. doi: 10.1016/j.cub.2017.03.074. Epub 2017 May 11.
5
Effects of generalized pooling on binocular disparity selectivity of neurons in the early visual cortex.
Philos Trans R Soc Lond B Biol Sci. 2016 Jun 19;371(1697). doi: 10.1098/rstb.2015.0266.
6
Disparity processing in primary visual cortex.
Philos Trans R Soc Lond B Biol Sci. 2016 Jun 19;371(1697). doi: 10.1098/rstb.2015.0255.
7
Subspace mapping of the three-dimensional spectral receptive field of macaque MT neurons.
J Neurophysiol. 2016 Aug 1;116(2):784-95. doi: 10.1152/jn.00934.2015. Epub 2016 May 18.

本文引用的文献

1
Solving stereo transparency with an extended coarse-to-fine disparity energy model.
Neural Comput. 2015 May;27(5):1058-82. doi: 10.1162/NECO_a_00722. Epub 2015 Feb 24.
2
Cross-matching: a modified cross-correlation underlying threshold energy model and match-based depth perception.
Front Comput Neurosci. 2014 Oct 15;8:127. doi: 10.3389/fncom.2014.00127. eCollection 2014.
4
Suppressive mechanisms in monkey V1 help to solve the stereo correspondence problem.
J Neurosci. 2011 Jun 1;31(22):8295-305. doi: 10.1523/JNEUROSCI.5000-10.2011.
6
Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model.
Neuron. 2008 Jan 10;57(1):147-58. doi: 10.1016/j.neuron.2007.10.042.
7
Spatial frequency integration for binocular correspondence in macaque area V4.
J Neurophysiol. 2008 Jan;99(1):402-8. doi: 10.1152/jn.00096.2007. Epub 2007 Oct 24.
8
Internal spatial organization of receptive fields of complex cells in the early visual cortex.
J Neurophysiol. 2007 Sep;98(3):1194-212. doi: 10.1152/jn.00429.2007. Epub 2007 Jul 25.
9
Receptive field properties of neurons in the early visual cortex revealed by local spectral reverse correlation.
J Neurosci. 2006 Mar 22;26(12):3269-80. doi: 10.1523/JNEUROSCI.4558-05.2006.
10
Encoding of three-dimensional surface slant in cat visual areas 17 and 18.
J Neurophysiol. 2006 May;95(5):2768-86. doi: 10.1152/jn.00955.2005. Epub 2006 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验