Lee Sang-Hun, Ledri Marco, Tóth Blanka, Marchionni Ivan, Henstridge Christopher M, Dudok Barna, Kenesei Kata, Barna László, Szabó Szilárd I, Renkecz Tibor, Oberoi Michelle, Watanabe Masahiko, Limoli Charles L, Horvai George, Soltesz Ivan, Katona István
Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697.
Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
J Neurosci. 2015 Jul 8;35(27):10039-57. doi: 10.1523/JNEUROSCI.4112-14.2015.
Persistent CB1 cannabinoid receptor activity limits neurotransmitter release at various synapses throughout the brain. However, it is not fully understood how constitutively active CB1 receptors, tonic endocannabinoid signaling, and its regulation by multiple serine hydrolases contribute to the synapse-specific calibration of neurotransmitter release probability. To address this question at perisomatic and dendritic GABAergic synapses in the mouse hippocampus, we used a combination of paired whole-cell patch-clamp recording, liquid chromatography/tandem mass spectrometry, stochastic optical reconstruction microscopy super-resolution imaging, and immunogold electron microscopy. Unexpectedly, application of the CB1 antagonist and inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide], but not the neutral antagonist NESS0327 [8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-5,6-dihydro-4H-benzo[2,3]cyclohepta[2,4-b]pyrazole-3-carboxamine], significantly increased synaptic transmission between CB1-positive perisomatic interneurons and CA1 pyramidal neurons. JZL184 (4-nitrophenyl 4-[bis(1,3-benzodioxol-5-yl)(hydroxy)methyl]piperidine-1-carboxylate), a selective inhibitor of monoacylglycerol lipase (MGL), the presynaptic degrading enzyme of the endocannabinoid 2-arachidonoylglycerol (2-AG), elicited a robust increase in 2-AG levels and concomitantly decreased GABAergic transmission. In contrast, inhibition of fatty acid amide hydrolase (FAAH) by PF3845 (N-pyridin-3-yl-4-[[3-[5-(trifluoromethyl)pyridin-2-yl]oxyphenyl]methyl]piperidine-1-carboxamide) elevated endocannabinoid/endovanilloid anandamide levels but did not change GABAergic synaptic activity. However, FAAH inhibitors attenuated tonic 2-AG increase and also decreased its synaptic effects. This antagonistic interaction required the activation of the transient receptor potential vanilloid receptor TRPV1, which was concentrated on postsynaptic intracellular membrane cisternae at perisomatic GABAergic symmetrical synapses. Interestingly, neither AM251, JZL184, nor PF3845 affected CB1-positive dendritic interneuron synapses. Together, these findings are consistent with the possibility that constitutively active CB1 receptors substantially influence perisomatic GABA release probability and indicate that the synaptic effects of tonic 2-AG release are tightly controlled by presynaptic MGL activity and also by postsynaptic endovanilloid signaling and FAAH activity.
Tonic cannabinoid signaling plays a critical role in the regulation of synaptic transmission. However, the mechanistic details of how persistent CB1 cannabinoid receptor activity inhibits neurotransmitter release have remained elusive. Therefore, electrophysiological recordings, lipid measurements, and super-resolution imaging were combined to elucidate those signaling molecules and mechanisms that underlie tonic cannabinoid signaling. The findings indicate that constitutive CB1 activity has pivotal function in the tonic control of hippocampal GABA release. Moreover, the endocannabinoid 2-arachidonoylglycerol (2-AG) is continuously generated postsynaptically, but its synaptic effect is regulated strictly by presynaptic monoacylglycerol lipase activity. Finally, anandamide signaling antagonizes tonic 2-AG signaling via activation of postsynaptic transient receptor potential vanilloid TRPV1 receptors. This unexpected mechanistic diversity may be necessary to fine-tune GABA release probability under various physiological and pathophysiological conditions.
CB1大麻素受体的持续活性限制了整个大脑中各种突触处的神经递质释放。然而,组成型活性CB1受体、张力性内源性大麻素信号传导及其受多种丝氨酸水解酶的调节如何促成神经递质释放概率的突触特异性校准,目前尚未完全清楚。为了在小鼠海马体的胞体周围和树突状GABA能突触处解决这个问题,我们结合了配对全细胞膜片钳记录、液相色谱/串联质谱、随机光学重建显微镜超分辨率成像和免疫金电子显微镜技术。出乎意料的是,应用CB1拮抗剂和反向激动剂AM251 [N-1-(2,4-二氯苯基)-5-(4-碘苯基)-4-甲基-N-1-哌啶基-1H-吡唑-3-甲酰胺],而不是中性拮抗剂NESS0327 [8-氯-1-(2,4-二氯苯基)-N-哌啶-1-基-5,6-二氢-4H-苯并[2,3]环庚[2,4-b]吡唑-3-甲胺],显著增加了CB1阳性胞体周围中间神经元与CA1锥体神经元之间的突触传递。JZL184(4-硝基苯基4-[双(1,3-苯并二氧杂环戊烯-5-基)(羟基)甲基]哌啶-1-羧酸酯),一种单酰甘油脂肪酶(MGL)的选择性抑制剂,内源性大麻素2-花生四烯酸甘油酯(2-AG)的突触前降解酶,引发了2-AG水平的强劲升高,并随之降低了GABA能传递。相反,PF3845(N-吡啶-3-基-4-[[3-[5-(三氟甲基)吡啶-2-基]氧基苯基]甲基]哌啶-1-甲酰胺)对脂肪酸酰胺水解酶(FAAH)的抑制提高了内源性大麻素/内源性香草酸阿南达米德水平,但未改变GABA能突触活性。然而,FAAH抑制剂减弱了张力性2-AG的增加,也降低了其突触效应。这种拮抗相互作用需要瞬时受体电位香草酸受体TRPV1的激活,该受体集中在胞体周围GABA能对称突触的突触后细胞内膜池上。有趣的是,AM251、JZL184和PF3845均未影响CB1阳性树突状中间神经元突触。总之,这些发现与组成型活性CB1受体显著影响胞体周围GABA释放概率的可能性一致,并表明张力性2-AG释放的突触效应受到突触前MGL活性以及突触后内源性香草酸信号传导和FAAH活性的严格控制。
张力性大麻素信号传导在突触传递的调节中起关键作用。然而,持续的CB1大麻素受体活性如何抑制神经递质释放的机制细节仍不清楚。因此,结合电生理记录、脂质测量和超分辨率成像来阐明构成张力性大麻素信号传导基础的那些信号分子和机制。研究结果表明,组成型CB1活性在海马体GABA释放的张力性控制中具有关键作用。此外,内源性大麻素2-花生四烯酸甘油酯(2-AG)在突触后持续产生,但其突触效应受到突触前单酰甘油脂肪酶活性的严格调节。最后,阿南达米德信号传导通过激活突触后瞬时受体电位香草酸TRPV1受体拮抗张力性2-AG信号传导。这种意想不到的机制多样性可能是在各种生理和病理生理条件下微调GABA释放概率所必需的。