Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA.
Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary.
Sci Adv. 2024 May 31;10(22):eado0077. doi: 10.1126/sciadv.ado0077. Epub 2024 May 29.
While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CBRs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CBRs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.
虽然我们对顺行突触传递的纳米级结构的理解正在迅速扩展,但逆行突触通讯的不同机制背后的定性和定量分子原理仍不明确。我们表明,特定形式的持续型大麻素信号对于设定靶细胞依赖性突触变异性是必不可少的。它不需要两种主要的内源性大麻素产生酶的活性。相反,通过开发用于在同一单位突触进行生理、解剖和分子测量的工作流程,我们证明了 1 型大麻素受体 (CBR) 与释放机制的纳米级化学计量比足以预测特定突触的释放概率。因此,选择性减少细胞外 CBR 不会影响突触传递,而体内暴露于植物大麻素 Δ-四氢大麻酚会破坏细胞内突触的纳米级化学计量比并降低突触变异性。这些发现表明,突触利用突触前受体与释放机制的纳米级化学计量比以靶细胞依赖的方式建立突触强度。