Suppr超能文献

使用混合分类器实现二维-三维医学图像配准的全自动初始化

Fully automatic initialization of two-dimensional-three-dimensional medical image registration using hybrid classifier.

作者信息

Wu Jing, Fatah Emam E Abdel, Mahfouz Mohamed R

机构信息

University of Tennessee , Institute of Biomedical Engineering, 1506 Middle Drive, Knoxville, Tennessee 37996-2000, United States.

出版信息

J Med Imaging (Bellingham). 2015 Apr;2(2):024007. doi: 10.1117/1.JMI.2.2.024007. Epub 2015 Jun 2.

Abstract

X-ray video fluoroscopy along with two-dimensional-three-dimensional (2D-3D) registration techniques is widely used to study joints in vivo kinematic behaviors. These techniques, however, are generally very sensitive to the initial alignment of the 3-D model. We present an automatic initialization method for 2D-3D registration of medical images. The contour of the knee bone or implant was first automatically extracted from a 2-D x-ray image. Shape descriptors were calculated by normalized elliptical Fourier descriptors to represent the contour shape. The optimal pose was then determined by a hybrid classifier combining [Formula: see text]-nearest neighbors and support vector machine. The feasibility of the method was first validated on computer synthesized images, with 100% successful estimation for the femur and tibia implants, 92% for the femur and 95% for the tibia. The method was further validated on fluoroscopic x-ray images with all the poses of the testing cases successfully estimated. Finally, the method was evaluated as an initialization of a feature-based 2D-3D registration. The initialized and uninitialized registrations had success rates of 100% and 50%, respectively. The proposed method can be easily utilized for 2D-3D image registration on various medical objects and imaging modalities.

摘要

X射线视频荧光透视技术与二维-三维(2D-3D)配准技术一起被广泛用于研究关节的体内运动行为。然而,这些技术通常对三维模型的初始对齐非常敏感。我们提出了一种用于医学图像2D-3D配准的自动初始化方法。首先从二维X射线图像中自动提取膝盖骨或植入物的轮廓。通过归一化椭圆傅里叶描述符计算形状描述符以表示轮廓形状。然后由结合了k近邻和支持向量机的混合分类器确定最佳姿态。该方法的可行性首先在计算机合成图像上得到验证,股骨和胫骨植入物的估计成功率为100%,股骨为92%,胫骨为95%。该方法在荧光透视X射线图像上进一步得到验证,测试案例的所有姿态均成功估计。最后,该方法被评估为基于特征的2D-3D配准的初始化。初始化和未初始化配准的成功率分别为100%和50%。所提出的方法可以很容易地用于各种医学对象和成像模态的2D-3D图像配准。

相似文献

1
Fully automatic initialization of two-dimensional-three-dimensional medical image registration using hybrid classifier.
J Med Imaging (Bellingham). 2015 Apr;2(2):024007. doi: 10.1117/1.JMI.2.2.024007. Epub 2015 Jun 2.
2
Pose-aware C-arm for automatic re-initialization of interventional 2D/3D image registration.
Int J Comput Assist Radiol Surg. 2017 Jul;12(7):1221-1230. doi: 10.1007/s11548-017-1611-8. Epub 2017 May 19.
3
Fully automatic reconstruction of personalized 3D volumes of the proximal femur from 2D X-ray images.
Int J Comput Assist Radiol Surg. 2016 Sep;11(9):1673-85. doi: 10.1007/s11548-016-1400-9. Epub 2016 Apr 2.
4
2D-3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models.
Med Image Anal. 2011 Dec;15(6):840-50. doi: 10.1016/j.media.2011.04.001. Epub 2011 May 4.
5
Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration.
Int J Comput Assist Radiol Surg. 2020 May;15(5):759-769. doi: 10.1007/s11548-020-02162-7. Epub 2020 Apr 24.
8
[Development of three-dimensional kinematic analysis system for artificial knee implants using X-ray fluoroscopic imaging].
Nihon Hoshasen Gijutsu Gakkai Zasshi. 2005 Jan 20;61(1):79-87. doi: 10.6009/jjrt.kj00003326617.
9
Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images.
J Biomech. 2005 Feb;38(2):229-39. doi: 10.1016/j.jbiomech.2004.02.025.

引用本文的文献

2
The Impact of Machine Learning on 2D/3D Registration for Image-Guided Interventions: A Systematic Review and Perspective.
Front Robot AI. 2021 Aug 30;8:716007. doi: 10.3389/frobt.2021.716007. eCollection 2021.
3
Reconstruction of knee anatomy from single-plane fluoroscopic x-ray based on a nonlinear statistical shape model.
J Med Imaging (Bellingham). 2021 Jan;8(1):016001. doi: 10.1117/1.JMI.8.1.016001. Epub 2021 Jan 11.
4
Robust x-ray image segmentation by spectral clustering and active shape model.
J Med Imaging (Bellingham). 2016 Jul;3(3):034005. doi: 10.1117/1.JMI.3.3.034005. Epub 2016 Sep 20.

本文引用的文献

1
Improving sex estimation from crania using a novel three-dimensional quantitative method.
J Forensic Sci. 2014 May;59(3):590-600. doi: 10.1111/1556-4029.12379. Epub 2014 Feb 6.
2
Statistical shape model-based femur kinematics from biplane fluoroscopy.
IEEE Trans Med Imaging. 2012 Aug;31(8):1573-83. doi: 10.1109/TMI.2012.2195783. Epub 2012 Apr 26.
3
An automatic 2D-3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images.
Comput Methods Biomech Biomed Engin. 2012;15(11):1245-56. doi: 10.1080/10255842.2011.597387. Epub 2011 Aug 1.
5
In vivo kinematics after a cruciate-substituting TKA.
Clin Orthop Relat Res. 2010 Mar;468(3):807-14. doi: 10.1007/s11999-009-1072-7. Epub 2009 Sep 4.
6
Effective 2D-3D medical image registration using Support Vector Machine.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5386-9. doi: 10.1109/IEMBS.2008.4650432.
7
Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion.
J Biomech. 2008;41(7):1616-22. doi: 10.1016/j.jbiomech.2008.01.034. Epub 2008 Apr 3.
9
Automatic methods for characterization of sexual dimorphism of adult femora: distal femur.
Comput Methods Biomech Biomed Engin. 2007 Dec;10(6):447-56. doi: 10.1080/10255840701552093. Epub 2007 Sep 24.
10
Patella sex determination by 3D statistical shape models and nonlinear classifiers.
Forensic Sci Int. 2007 Dec 20;173(2-3):161-70. doi: 10.1016/j.forsciint.2007.02.024. Epub 2007 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验