Suppr超能文献

分割误差对植入物模型在X射线图像中的三维到二维配准的影响。

Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images.

作者信息

Mahfouz Mohamed R, Hoff William A, Komistek Richard D, Dennis Douglas A

机构信息

University of Tennessee, 313 Perkins Hall, Knoxville, TN 37996, USA.

出版信息

J Biomech. 2005 Feb;38(2):229-39. doi: 10.1016/j.jbiomech.2004.02.025.

Abstract

In many biomedical applications, it is desirable to estimate the three-dimensional (3D) position and orientation (pose) of a metallic rigid object (such as a knee or hip implant) from its projection in a two-dimensional (2D) X-ray image. If the geometry of the object is known, as well as the details of the image formation process, then the pose of the object with respect to the sensor can be determined. A common method for 3D-to-2D registration is to first segment the silhouette contour from the X-ray image; that is, identify all points in the image that belong to the 2D silhouette and not to the background. This segmentation step is then followed by a search for the 3D pose that will best match the observed contour with a predicted contour. Although the silhouette of a metallic object is often clearly visible in an X-ray image, adjacent tissue and occlusions can make the exact location of the silhouette contour difficult to determine in places. Occlusion can occur when another object (such as another implant component) partially blocks the view of the object of interest. In this paper, we argue that common methods for segmentation can produce errors in the location of the 2D contour, and hence errors in the resulting 3D estimate of the pose. We show, on a typical fluoroscopy image of a knee implant component, that interactive and automatic methods for segmentation result in segmented contours that vary significantly. We show how the variability in the 2D contours (quantified by two different metrics) corresponds to variability in the 3D poses. Finally, we illustrate how traditional segmentation methods can fail completely in the (not uncommon) cases of images with occlusion.

摘要

在许多生物医学应用中,期望从金属刚性物体(如膝盖或髋关节植入物)在二维(2D)X射线图像中的投影来估计其三维(3D)位置和方向(姿态)。如果物体的几何形状以及图像形成过程的细节已知,那么就可以确定物体相对于传感器的姿态。一种常见的3D到2D配准方法是首先从X射线图像中分割出轮廓线;也就是说,识别图像中所有属于二维轮廓且不属于背景的点。然后在这个分割步骤之后,搜索能使观察到的轮廓与预测轮廓最佳匹配的3D姿态。尽管金属物体的轮廓在X射线图像中通常清晰可见,但相邻组织和遮挡可能会使轮廓线的确切位置在某些地方难以确定。当另一个物体(如另一个植入部件)部分遮挡了感兴趣物体的视图时,就会发生遮挡。在本文中,我们认为常见的分割方法可能会在二维轮廓的位置产生误差,从而在姿态的三维估计结果中产生误差。我们在膝盖植入部件的典型透视图像上表明,交互式和自动分割方法会导致分割出的轮廓有显著差异。我们展示了二维轮廓的变异性(由两种不同的度量来量化)如何与三维姿态的变异性相对应。最后,我们说明了传统分割方法在存在遮挡的图像(这种情况并不罕见)中可能会完全失效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验