Suppr超能文献

一种参与主动触觉感知的下行机械感觉通路的计算模型。

A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing.

作者信息

Ache Jan M, Dürr Volker

机构信息

Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany; Cognitive Interaction Technology-Center of Excellence, Bielefeld University, Bielefeld, Germany.

出版信息

PLoS Comput Biol. 2015 Jul 9;11(7):e1004263. doi: 10.1371/journal.pcbi.1004263. eCollection 2015 Jul.

Abstract

Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs). First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC) analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs 'coding-space' because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This reveals the versatility of the framework for modelling a complete descending neural pathway.

摘要

许多动物,包括人类,都依靠主动触觉感知来探索环境并避开障碍物,尤其是在黑暗中。在此,我们构建了一条下行神经通路模型,该通路介导从头部触觉传感器到胸部神经网络的短潜伏期本体感觉信息。我们研究了夜行性竹节虫,它是研究适应性运动(包括触觉介导的伸展运动)的一种模式生物。与哺乳动物一样,昆虫需要移动它们的触觉传感器来探测环境。因此,关于传感器位置和运动的线索对于触觉接触的空间定位以及快速适应性运动反应的协调至关重要。我们的模型解释了关于昆虫主要触觉传感器触角的运动和位置的本体感觉信息是如何由单一类型的机械感觉传入神经进行编码的。此外,它还解释了这些信息是如何通过多种下行中间神经元(DINs)整合并传递到胸部神经网络的。首先,我们量化了一群DIN对触角位置、运动和运动方向变化的反应。使用主成分(PC)分析,我们发现只有两个主成分占DIN反应特性方差的很大一部分。我们将由这些主成分所跨越的二维空间称为“编码空间”,因为它捕获了整个DIN群体的基本特征。其次,我们对这条下行通路的机械感受输入元件进行建模,这是一群监测触角关节偏转的本体感觉机械感受毛。最后,我们提出了一个计算框架,该框架可以将毛场模型作为唯一输入来模拟所有重要DIN类型的反应特性。通过比较调谐特性以及将建模神经元映射到真实DIN群体的二维编码空间中,对这个DIN模型进行了验证。这揭示了该框架在模拟完整下行神经通路方面的通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e15/4497639/7923fa10ca63/pcbi.1004263.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验