University of Leipzig, Faculty for Biosciences, Pharmacy and Psychology, 04103 Leipzig, Germany.
J Comp Neurol. 2011 Jun 15;519(9):1677-90. doi: 10.1002/cne.22594.
Crickets use their long antennae as tactile sensors. Confronted with obstacles, conspecifics, or predators, antennal contacts trigger short-latency motor responses. To reveal the neuronal pathway underlying these antennal-guided locomotory reactions we identified descending interneurons that rapidly transmit antennal-tactile information from the head to the thorax in the cricket Gryllus bimaculatus. Antennae were stimulated with forces approximating those of naturally occurring antennal contacts. Responding interneurons were individually identified by intracellular axon recordings in the pro-mesothoracic connective and subsequent tracer injection. Simultaneous with the intracellular recordings, the overall spike response in the neck connectives was recorded extracellularly to reveal the precise response-timing of each individual neuron within the collective multiunit response. Here we describe four descending brain neurons and two with the soma in the subesophageal ganglion. All antennal-touch elicited action potentials apparent in the neck connective recordings within 10 ms after antennal-contact are generated by these six interneurons. Their dendrites ramify in primary antennal-mechanosensory neuropils of the head ganglia. Each of them consistently generated action potentials in response to antennal touching and three of them responded also to different visual stimulation (light-off, movement). Their descending axons conduct action potentials with 3-5 m/s to the thoracic ganglia where they send off side branches in dorsal neuropils. Their physiological and anatomical properties qualify them as descending giant fibers in the cricket and suggest an involvement in evoking fast locomotory reactions. They form a fast-mediating cephalo-thoracic pathway for antennal-tactile information, whereas all other antennal-tactile interneurons had response latencies exceeding 40 ms.
蟋蟀利用其长长的触角作为触觉传感器。当遇到障碍物、同种个体或捕食者时,触角接触会引发潜伏期短的运动反应。为了揭示这些触角引导的运动反应背后的神经元通路,我们鉴定了在蟋蟀 Gryllus bimaculatus 中快速将触角触觉信息从头部传递到胸部的下行中间神经元。用近似于自然发生的触角接触的力刺激触角。通过在原胸连合中的细胞内轴突记录和随后的示踪剂注射,单独鉴定出反应性中间神经元。在进行细胞内记录的同时,通过颈连合的细胞外记录来记录整体的尖峰反应,以揭示集体多单位反应中每个神经元的精确反应时间。在这里,我们描述了四个下行脑神经元和两个位于食管下神经节中的神经元。在触角接触后 10 毫秒内,在颈连合记录中出现的所有触角触摸引发的动作电位都是由这六个中间神经元产生的。它们的树突在头部神经节的初级触角机械感觉神经丛中分枝。它们中的每一个都对触角触摸产生动作电位,其中三个也对不同的视觉刺激(光熄灭、运动)作出反应。它们的下行轴突以 3-5 m/s 的速度传导动作电位到胸部神经节,在那里它们在背侧神经丛中发出侧支。它们的生理和解剖特性使它们有资格成为蟋蟀中的下行巨大纤维,并表明它们参与引发快速运动反应。它们形成了一个快速介导的触角触觉信息的头胸通路,而所有其他触角触觉中间神经元的反应潜伏期超过 40 毫秒。