Zhang Dengke, Feng Xue, Cui Kaiyu, Liu Fang, Huang Yidong
Department of Electronic Engineering, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China.
Sci Rep. 2015 Jul 10;5:11982. doi: 10.1038/srep11982.
In this work, an explicit formula is deduced for identifying the orbital angular moment (OAM) of vectorial vortex with space-variant state of polarization (SOP). Different to scalar vortex, the OAM of vectorial vortex can be attributed to two parts: 1. the azimuthal gradient of Pancharatnam phase; 2. the product between the azimuthal gradient of orientation angle of SOP and relevant solid angle on the Poincaré sphere. With our formula, a geometrical description for OAM of light beams can be achieved under the framework of the traditional Poincaré sphere. Numerical simulations for two types of vectorial vortices have been carried on to confirm our presented formula as well as demonstrate the geometrical description of OAM. Furthermore, this work would pave the way for precise characterization of OAM charge of vectorial vortices.
在这项工作中,推导了一个显式公式,用于识别具有空间变化偏振态(SOP)的矢量涡旋的轨道角动量(OAM)。与标量涡旋不同,矢量涡旋的OAM可归因于两部分:1. 潘查拉特纳姆相位的方位角梯度;2. SOP取向角的方位角梯度与庞加莱球上相关立体角的乘积。利用我们的公式,可以在传统庞加莱球的框架下实现对光束OAM的几何描述。对两种类型的矢量涡旋进行了数值模拟,以验证我们提出的公式,并展示OAM的几何描述。此外,这项工作将为精确表征矢量涡旋的OAM电荷铺平道路。