Suppr超能文献

利用超表面的动态相位和几何相位组合来产生光学涡旋光束。

Exploiting the combined dynamic and geometric phases for optical vortex beam generation using metasurfaces.

作者信息

Cui Jialong, Qing Chen, Feng Lishuang, Zhang Dengke

机构信息

School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China.

出版信息

Nanophotonics. 2025 Mar 11;14(5):635-646. doi: 10.1515/nanoph-2025-0004. eCollection 2025 Mar.

Abstract

The generation of optical vortex beams is pivotal for a myriad of applications, encompassing optical tweezing, optical communications, and quantum information, among others. The metasurface-based approach has realized significant advancements in vortex production, utilizing either dynamic or geometric phases. The dynamic design exhibits indifference to the polarization state of incident light, while the geometric design is inextricably tied to it. In the study, we put forth the proposition that combining dynamic and geometric phases could unlock the potential of metasurface design in generating optical vortices. A hybrid design that harnesses the combined dynamic and geometric phases can attain the same objective while offering tunable functional control over the polarization of light. We establish a correlation between the structural parameters of metasurface and the topological charge of the resulting vortices. The experimental results fully demonstrate the design's flexibility and its effective control over the polarization constraints of incident light. Our research uncovers the capacity for vortex generation through the manipulation of hybrid phases introduced by metasurfaces, indicating significant potential for the design of optical devices and the future advancement of innovative optical applications.

摘要

光学涡旋光束的产生对于众多应用至关重要,包括光镊、光通信和量子信息等。基于超表面的方法在涡旋产生方面取得了重大进展,利用了动态相位或几何相位。动态设计对入射光的偏振态不敏感,而几何设计则与之紧密相关。在这项研究中,我们提出结合动态相位和几何相位可以释放超表面设计在产生光学涡旋方面的潜力。一种利用动态和几何相位相结合的混合设计可以实现相同的目标,同时提供对光偏振的可调功能控制。我们建立了超表面的结构参数与所得涡旋的拓扑电荷之间的相关性。实验结果充分证明了该设计的灵活性及其对入射光偏振约束的有效控制。我们的研究揭示了通过操纵超表面引入的混合相位来产生涡旋的能力,表明在光学器件设计和创新光学应用的未来发展方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c3/11953722/2481f1aa4aa1/j_nanoph-2025-0004_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验