Suppr超能文献

复活酶与当代酶的功能分析揭示了多糖裂解酶家族2中胞外分解作用出现的进化路径。

Functional Analyses of Resurrected and Contemporary Enzymes Illuminate an Evolutionary Path for the Emergence of Exolysis in Polysaccharide Lyase Family 2.

作者信息

McLean Richard, Hobbs Joanne K, Suits Michael D, Tuomivaara Sami T, Jones Darryl R, Boraston Alisdair B, Abbott D Wade

机构信息

From the Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada.

the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada.

出版信息

J Biol Chem. 2015 Aug 28;290(35):21231-43. doi: 10.1074/jbc.M115.664847. Epub 2015 Jul 9.

Abstract

Family 2 polysaccharide lyases (PL2s) preferentially catalyze the β-elimination of homogalacturonan using transition metals as catalytic cofactors. PL2 is divided into two subfamilies that have been generally associated with secretion, Mg(2+) dependence, and endolysis (subfamily 1) and with intracellular localization, Mn(2+) dependence, and exolysis (subfamily 2). When present within a genome, PL2 genes are typically found as tandem copies, which suggests that they provide complementary activities at different stages along a catabolic cascade. This relationship most likely evolved by gene duplication and functional divergence (i.e. neofunctionalization). Although the molecular basis of subfamily 1 endolytic activity is understood, the adaptations within the active site of subfamily 2 enzymes that contribute to exolysis have not been determined. In order to investigate this relationship, we have conducted a comparative enzymatic analysis of enzymes dispersed within the PL2 phylogenetic tree and elucidated the structure of VvPL2 from Vibrio vulnificus YJ016, which represents a transitional member between subfamiles 1 and 2. In addition, we have used ancestral sequence reconstruction to functionally investigate the segregated evolutionary history of PL2 progenitor enzymes and illuminate the molecular evolution of exolysis. This study highlights that ancestral sequence reconstruction in combination with the comparative analysis of contemporary and resurrected enzymes holds promise for elucidating the origins and activities of other carbohydrate active enzyme families and the biological significance of cryptic metabolic pathways, such as pectinolysis within the zoonotic marine pathogen V. vulnificus.

摘要

家族2多糖裂解酶(PL2s)优先利用过渡金属作为催化辅因子催化同型半乳糖醛酸聚糖的β-消除反应。PL2分为两个亚家族,通常与分泌、Mg(2+)依赖性和内切作用(亚家族1)以及细胞内定位、Mn(2+)依赖性和外切作用(亚家族2)相关。当存在于基因组中时,PL2基因通常以串联拷贝的形式出现,这表明它们在分解代谢级联反应的不同阶段提供互补活性。这种关系很可能是通过基因复制和功能分化(即新功能化)进化而来的。虽然亚家族1内切活性的分子基础已为人所知,但亚家族2酶活性位点内有助于外切作用的适应性变化尚未确定。为了研究这种关系,我们对分散在PL2系统发育树中的酶进行了比较酶学分析,并阐明了创伤弧菌YJ016的VvPL2结构,它代表了亚家族1和2之间的过渡成员。此外,我们利用祖先序列重建在功能上研究了PL2祖酶的分离进化历史,并阐明了外切作用的分子进化。这项研究强调,祖先序列重建与当代和复活酶的比较分析相结合,有望阐明其他碳水化合物活性酶家族的起源和活性以及隐秘代谢途径的生物学意义,例如人畜共患海洋病原体创伤弧菌中的果胶分解。

相似文献

3
An ancestral member of the polysaccharide lyase family 2 displays endolytic activity and magnesium dependence.
Appl Biochem Biotechnol. 2013 Dec;171(7):1911-23. doi: 10.1007/s12010-013-0483-9. Epub 2013 Sep 7.
5
An Improved Kinetic Assay for the Characterization of Metal-Dependent Pectate Lyases.
Methods Mol Biol. 2017;1588:37-44. doi: 10.1007/978-1-4939-6899-2_4.
8
Uronic polysaccharide degrading enzymes.
Curr Opin Struct Biol. 2014 Oct;28:87-95. doi: 10.1016/j.sbi.2014.07.012. Epub 2014 Aug 25.
9
Exploring molecular determinants of polysaccharide lyase family 6-1 enzyme activity.
Glycobiology. 2021 Dec 18;31(11):1557-1570. doi: 10.1093/glycob/cwab073.
10
Structure-function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism.
J Biol Chem. 2018 Mar 16;293(11):4026-4036. doi: 10.1074/jbc.RA117.001642. Epub 2018 Jan 30.

引用本文的文献

2
Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics.
Comput Struct Biotechnol J. 2020 Jun 19;18:1497-1508. doi: 10.1016/j.csbj.2020.06.021. eCollection 2020.
3
Two complementary α-fucosidases from promote complete degradation of host-derived carbohydrate antigens.
J Biol Chem. 2019 Aug 23;294(34):12670-12682. doi: 10.1074/jbc.RA119.009368. Epub 2019 Jul 2.
6
Polysaccharide Utilization Loci: Fueling Microbial Communities.
J Bacteriol. 2017 Jul 11;199(15). doi: 10.1128/JB.00860-16. Print 2017 Aug 1.
7
KdgF, the missing link in the microbial metabolism of uronate sugars from pectin and alginate.
Proc Natl Acad Sci U S A. 2016 May 31;113(22):6188-93. doi: 10.1073/pnas.1524214113. Epub 2016 May 16.

本文引用的文献

1
Automatic prediction of polysaccharide utilization loci in Bacteroidetes species.
Bioinformatics. 2015 Mar 1;31(5):647-55. doi: 10.1093/bioinformatics/btu716. Epub 2014 Oct 28.
2
Using structure to inform carbohydrate binding module function.
Curr Opin Struct Biol. 2014 Oct;28:32-40. doi: 10.1016/j.sbi.2014.07.004. Epub 2014 Aug 9.
3
Structure of the oligogalacturonate-specific KdgM porin.
Acta Crystallogr D Biol Crystallogr. 2014 Jun;70(Pt 6):1770-8. doi: 10.1107/S1399004714007147. Epub 2014 May 30.
4
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
5
Phylogeny-aware alignment with PRANK.
Methods Mol Biol. 2014;1079:155-70. doi: 10.1007/978-1-62703-646-7_10.
6
An ancestral member of the polysaccharide lyase family 2 displays endolytic activity and magnesium dependence.
Appl Biochem Biotechnol. 2013 Dec;171(7):1911-23. doi: 10.1007/s12010-013-0483-9. Epub 2013 Sep 7.
7
Vibrio vulnificus: death on the half shell. A personal journey with the pathogen and its ecology.
Microb Ecol. 2013 May;65(4):793-9. doi: 10.1007/s00248-012-0140-9. Epub 2012 Dec 21.
9
jModelTest 2: more models, new heuristics and parallel computing.
Nat Methods. 2012 Jul 30;9(8):772. doi: 10.1038/nmeth.2109.
10
dbCAN: a web resource for automated carbohydrate-active enzyme annotation.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51. doi: 10.1093/nar/gks479. Epub 2012 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验