Ning Jing, Rahbar Mohammad H, Choi Sangbum, Piao Jin, Hong Chuan, Del Junco Deborah J, Rahbar Elaheh, Fox Erin E, Holcomb John B, Wang Mei-Cheng
1 Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA.
2 Division of Clinical and Translational Sciences, Department of Internal Medicine, The University of Texas Medical School at Houston, Houston, USA.
Stat Methods Med Res. 2017 Aug;26(4):1969-1981. doi: 10.1177/0962280215593974. Epub 2015 Jul 9.
In comparative effectiveness studies of multicomponent, sequential interventions like blood product transfusion (plasma, platelets, red blood cells) for trauma and critical care patients, the timing and dynamics of treatment relative to the fragility of a patient's condition is often overlooked and underappreciated. While many hospitals have established massive transfusion protocols to ensure that physiologically optimal combinations of blood products are rapidly available, the period of time required to achieve a specified massive transfusion standard (e.g. a 1:1 or 1:2 ratio of plasma or platelets:red blood cells) has been ignored. To account for the time-varying characteristics of transfusions, we use semiparametric rate models for multivariate recurrent events to estimate blood product ratios. We use latent variables to account for multiple sources of informative censoring (early surgical or endovascular hemorrhage control procedures or death). The major advantage is that the distributions of latent variables and the dependence structure between the multivariate recurrent events and informative censoring need not be specified. Thus, our approach is robust to complex model assumptions. We establish asymptotic properties and evaluate finite sample performance through simulations, and apply the method to data from the PRospective Observational Multicenter Major Trauma Transfusion study.
在针对创伤和重症患者的多成分、序贯干预措施(如血液制品输注(血浆、血小板、红细胞))的比较有效性研究中,相对于患者病情脆弱程度的治疗时机和动态变化常常被忽视和低估。虽然许多医院已制定大量输血方案,以确保能迅速获得生理上最优的血液制品组合,但达到特定大量输血标准(如血浆或血小板与红细胞的比例为1:1或1:2)所需的时间却被忽略了。为了考虑输血的时变特征,我们使用多变量复发事件的半参数率模型来估计血液制品比例。我们使用潜在变量来考虑信息删失的多种来源(早期手术或血管内出血控制程序或死亡)。主要优点是无需指定潜在变量的分布以及多变量复发事件与信息删失之间的依赖结构。因此,我们的方法对复杂的模型假设具有鲁棒性。我们建立渐近性质,并通过模拟评估有限样本性能,然后将该方法应用于前瞻性观察性多中心重大创伤输血研究的数据。