Suppr超能文献

人类大脑皮层柱中编码的视觉信息能否从脑磁图数据中解码出来?

Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans?

作者信息

Cichy Radoslaw Martin, Ramirez Fernando Mario, Pantazis Dimitrios

机构信息

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.

Bernstein Center for Computational Neuroscience, Berlin, Germany.

出版信息

Neuroimage. 2015 Nov 1;121:193-204. doi: 10.1016/j.neuroimage.2015.07.011. Epub 2015 Jul 8.

Abstract

It is a principal open question whether noninvasive imaging methods in humans can decode information encoded at a spatial scale as fine as the basic functional unit of cortex: cortical columns. We addressed this question in five magnetoencephalography (MEG) experiments by investigating a columnar-level encoded visual feature: contrast edge orientation. We found that MEG signals contained orientation-specific information as early as approximately 50 ms after stimulus onset even when controlling for confounds, such as overrepresentation of particular orientations, stimulus edge interactions, and global form-related signals. Theoretical modeling confirmed the plausibility of this empirical result. An essential consequence of our results is that information encoded in the human brain at the level of cortical columns should in general be accessible by multivariate analysis of electrophysiological signals.

摘要

人类的非侵入性成像方法能否解码在与皮层基本功能单元(皮质柱)一样精细的空间尺度上编码的信息,这是一个主要的开放性问题。我们在五个脑磁图(MEG)实验中通过研究一个柱状水平编码的视觉特征:对比度边缘方向,来解决这个问题。我们发现,即使在控制了诸如特定方向的过度表征、刺激边缘相互作用和全局形状相关信号等混杂因素的情况下,MEG信号在刺激开始后约50毫秒就包含了方向特异性信息。理论建模证实了这一实验结果的合理性。我们结果的一个重要结论是,一般来说,通过对电生理信号进行多变量分析,应该可以获取人类大脑在皮质柱水平编码的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验