Suppr超能文献

事物数据集(THINGS-data),一个多模态大型数据集集合,用于研究人类大脑和行为中的目标表示。

THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior.

机构信息

Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, United States.

Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

出版信息

Elife. 2023 Feb 27;12:e82580. doi: 10.7554/eLife.82580.

Abstract

Understanding object representations requires a broad, comprehensive sampling of the objects in our visual world with dense measurements of brain activity and behavior. Here, we present THINGS-data, a multimodal collection of large-scale neuroimaging and behavioral datasets in humans, comprising densely sampled functional MRI and magnetoencephalographic recordings, as well as 4.70 million similarity judgments in response to thousands of photographic images for up to 1,854 object concepts. THINGS-data is unique in its breadth of richly annotated objects, allowing for testing countless hypotheses at scale while assessing the reproducibility of previous findings. Beyond the unique insights promised by each individual dataset, the multimodality of THINGS-data allows combining datasets for a much broader view into object processing than previously possible. Our analyses demonstrate the high quality of the datasets and provide five examples of hypothesis-driven and data-driven applications. THINGS-data constitutes the core public release of the THINGS initiative (https://things-initiative.org) for bridging the gap between disciplines and the advancement of cognitive neuroscience.

摘要

理解物体表示需要广泛、全面地对我们视觉世界中的物体进行采样,同时对大脑活动和行为进行密集测量。在这里,我们提出了 THINGS 数据,这是一个包含大量人类神经影像学和行为数据集的多模态集合,包括密集采样的功能磁共振成像和脑磁图记录,以及对数千张照片的 470 万次相似性判断,涵盖了多达 1854 个物体概念。THING 数据在其丰富的注释物体的广度上是独一无二的,允许在评估以前发现的可重复性的同时,大规模地测试无数的假设。除了每个单独数据集所承诺的独特见解之外,THING 数据的多模态性还允许将数据集组合在一起,从而更广泛地观察物体处理,这在以前是不可能的。我们的分析表明了数据集的高质量,并提供了五个假设驱动和数据驱动应用的示例。THING 数据构成了 THINGS 计划(https://things-initiative.org)的核心公共版本,旨在弥合学科之间的差距,推动认知神经科学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdd0/10038662/95729443a5f0/elife-82580-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验